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Quadrupolar nuclear spin relaxation is treated by a perturbation method, which 
shows that the relaxation is nearly exponential provided that the effective spectral 
density is only weakly frequency dependent. Approximate analytical expressions 
for the relaxation rates are derived and tested against the experimentally accessible 
apparent relaxation rates, for a fast-exchange two-state model. The results for spin 
I = 5/2 and 7/2 indicate that the analytical expressions are accurate to within a few 
percent in most experimental situations. 

INTRODUCTION 

The magnetic relaxation of a nucleus with spin I 2 1 is usually due mainly to the 
interaction of the nuclear electric quadrupole moment with fluctuating electric 
field gradients present at the position of the nucleus. It was shown 25 years ago (I ) 
that, except for the easel = 1, which will not concern us here, quadrupolar relaxa- 
tion is, ingeneral, not a simple exponential decay. For nuclei with half-integral spin, 
such as 7Li, 23Na, 35C1, 3gK (I = 3/2), “0, 25Mg (I = 5/2), 43Ca, 133Cs, and 13gLa 
(I = 7/2), the magnetization decays as a weighted sum of Z + l/2 exponentials. 
For Z = 3/2 there exist analytical expressions (I, 2) for the two relaxation rates, 
whereas for Z = 5/2 and 7/2 the relaxation matrix has to be diagonalized numeri- 
cally. This has been done in a series of papers (3-6) dealing with the completely 
analogous case of electron spin relaxation by modulation of the quadratic zero-field 
splitting, which, like the quadrupole coupling, is a second-rank interaction, and, 
more recently, also in connection with nuclear quadrupole relaxation (7, 8). 

In recent years, nuclear magnetic relaxation of quadrupolar nuclei has been 
used extensively to obtain information on the interaction of ions and small mole- 
cules with macromolecules and large molecular aggregates (9-12). In many cases, 
the observed nuclei are involved in rapid chemical exchange between a “bound” 
state, where there is significant interaction with the macromolecule or aggregate, 
and a “free” state, where fast reorientation makes the “extreme narrowing” 
approximation (the spectral density of the fluctuating field gradient is constant up to 
twice the resonance frequency) valid. In the bound state, however, extreme nar- 
rowing conditions do not usually obtain, with the result that the relaxation becomes 
multiexponential. 
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Pronounced deviations from simple exponential decay and Lorentzian absorp- 
tion lineshape, a prerequisite for a full nonexponential analysis, have, to our 
knowledge, been observed only for 23Na (1.3-18). More commonly, the relaxation 
appears exponential, even when the contribution from the bound state is consider- 
able and when the longitudinal and transverse relaxation rates are unequal and 
frequency dependent. Clearly, approximate analytical expressions for the apparent 
longitudinal and transverse relaxation rates in this regime of “nearly exponential” 
relaxation would be very useful. This is particularly so for I = 5/2 and 7/2, where, 
otherwise, the relaxation matrix must be diagonalized numerically for each set of 
values for the spectral densities, and apparent relaxation rates then calculated from 
a fit to a simple exponential decay or from the linewidth of the actual superposition 
of Lorentzians. 

We approach the problem of obtaining approximate analytical expressions for 
the relaxation rates through a perturbation treatment, in which we regard the ex- 
treme narrowing situation as being “perturbed” by allowing for a frequency de- 
pendence in the spectral density. In order to assess the validity of the resulting 
equations, we present numerical results for I = 3/2, 5/2, and 7/2. 

MULTIEXPONENTIAL SPIN RELAXATION IN MATRIX FORMALISM (19, 20) 

In the basis of eigenvectors of the Zeeman Hamiltonian, the longitudinal (a = 1) 
and transverse ((Y = 2) components of the macroscopic magnetization may be 
written 

M,(l) = ~dxX&), [II 

where M,(t) = M,(t) - M,, and M,(t) = M;(t). The I, are column vectors (tilde 
denotes transposition) representing spin operators and have components I,,, = m 
and I,,, = [&I + 1) - m(m + 1)]“2, respectively. The xu are column vectors 
composed of matrix elements of the reduced density operator according to x~,~ 
= Xmm - x--, and x2,,,, = xL,+~, the superscript referring to the interaction 
representation. 

The time evolution of the vectors xu(t) is, under certain conditions, given by 
Redfield’s equation of motion in the Zeeman basis, 

VI 

with the formal solution 
x&l = ew[-RJlx,W. [31 

The elements of the square matrices R, are related to the elements of the conven- 
tionalrelaxationmatrixthrough R,,,, = R,,-,-, - R,,,, and R,,,, = -R,,+l,,+l. 
For half-integral spin, the dimension of the vector space is Z + l/2 (m = l/2, 3/2, 
. . . ) Z)fora = 1 and2Z(m = -I, -I+ 1,. . . ,I - 1)fora = 2. 

The symmetric relaxation matrices R, are diagonalized by orthogonal transfor- 
mation matrices S,, 

R: = S,R$,. 141 
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The columns of S, constitute the eigenvectors Suk of R, with eigenvalues Rak, 

R,S,k = R,,S,k. [51 
Equations [ 11, [3], and [4] yield the solution 

M,(r) = M,(0)[i,IJ1~ exp[ -Et]I& 161 
where use has been made of the proportionality ~~(0) QI I, and where 1: = &I, 
is the spin vector transformed to the eigenbasis of R,. Equation 161 may be 
rewritten as 

IfllZ 
M,(t) = M,(O) 1 cakepRd’, 

k=1 

171 

where the normalized amplitudes are defined by 

c,k = [f,I,]-‘[6,,I,]2. WI 
Equation [7] shows that the magnetization decays as a weighted sum of Z + l/2 
exponentials. This is true also in the transverse case, since the 2Z-dimensional 
R, matrix can be transformed to block-diagonal form by exploiting the invariance 
of I2 and R2 with respect to the replacement m + -m - 1. The transverse relaxa- 
tion is then described by the largest block, of dimension Z + l/2. 

The simple exponential decay obtained for extreme narrowing emerges since, 
in that case, I, is proportional to an eigenvector of R,. According to Eq. [8], only 
one of the amplitudes c,k is then nonzero. For nonextreme narrowing this is no 
longer true and it becomes necessary to determine the eigenvalues and eigenvectors 
of the relaxation matrices. ForZ = 3/2 this can be accomplished analytically (I, 2), 
whereas forl = 5/2 and 7/2 one must, in the general case, rely on numerical meth- 
ods. However, for practical purposes it is desirable to have approximate analytical 
expressions for the relaxation behavior. 

PERTURBATION TREATMENT 

As a first step in determining approximate eigenvalues and eigenvectors of the 
relaxation matrices, we make the transformation 

RSo = a S’O’R t$O’ a a a* [91 

where SF’ defines the transformation that diagonalizes R, for extreme narrowing 
conditions; SL”) depends only on (Y and Z and can be obtained in analytical form. 
There are two points worth noting about the transformation [ 91. First, if the devia- 
tion from extreme narrowing is small, then R? will be “nearly diagonal.” Second, 
one of the columns of !$,O) is proportional to I,. 

From Tables 1 and 2, which show the transformed relaxation matrices R> 
for Z = 5/2 and 7/2, respectively, it is seen that the off-diagonal elements are 
determined by differences between spectral densities at frequencies 0, oo, and 
2wo. Thus, for extreme narrowing, i.e., when.Z(w) is independent of w, the matrices 
correctly reduce to diagonal form (with elements that are independent of a). 
Here, and in the following, we assume that the Hamiltonian describing the mo- 



92 HALLE AND WENNERSTROM 

TABLE 1 

TRANSFORMED RELAXATION MATRICES FOR I = 512 

AEO 

W=K E B F , a0 [ 1 K’lZW 
I 1 125 fi 

OFC 

cr=l a=2 

A 2J, + 83, JJ, + 5J, + 2J, 

B ; (825, + 835,) $, (123Jo + 3705, + 497J2) 

C y(ZJ, + 52) ; (3Jo + 26 J, + 165,) 

E - 

F - 

& (JI - Jz) &Jo - Jt) 

& (JI - Jz) 25 
12(14)l’* 

(3Jo + 1451 - 17J2) 

lecular motion is invariant under rotations. The relaxation matrix elements then 
contain spectral densities of the form (19) 

[lOI 

where Vk2 is the second partial derivative, with respect to the laboratory-fixed 
z coordinate, of the electric potential at the position of the nucleus. 

If all off-diagonal elements R$ are small relative to the difference between 
the diagonal elements which they connect, then approximate eigenvalues and 
eigenvectors of R, can be obtained through a perturbation expansion. To first 
order, the eigenvalues are simply the diagonal elements of R% with corresponding 
eigenvectors (22), 

where the Rip’ denote the zeroth-order eigenvalues, i.e., R&lck for J(o) inde- 
pendent of o and where the Ss are the columns of @). On inserting this ex- 
pression into Eq. [8] one obtains for the (unnormalized) amplitudes 

[121 

Since I, is proportional to the first column of !@ we have $$I, = S,,[i&]1’2 
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and consequently 

(1) = C,P 
[ 

R&2 
1 

2 

R&U’ _ R\U’ ’ 

c$! = 0 2 k > 2, [I31 

where use has been made of the fact that only one-off-diagonal elements of R2 
are nonzero (see tables). 

Thus, to first order the relaxation is biexponential and the relaxation rate of 
the major component, corresponding to element A in the tables, is 

2 
R:‘: 

3 21 + 3 
zz - i - eQ + 

40 h 
1 

P(2Z - 1) 
W, 8521, 

2 
R$;J 

3 
= -- i eQ 

40 h 
1 21 + 3 

zy2z - 1) 
[35, + 5.J, + 2321, 

U44 

[14bl 

where eQ is the nuclear electric quadrupole moment. It is interesting to note that 

TABLE 2 

TRANSFORMED RELAXATION MATRICES FOR I = 712 

I AEOO AEOO 

EBFO EBFO 
RSo =K RSo =K 

m m 

I I ! 1 OFCG’ OFCG’ 

Lo 0 G DA OOGD 

K= 

A 23, + 8J, 3J,, + SJ, + ZJ, 

B 2(12J, + 135,) L!(g J, + 5J, + 7Jz 

C ; (53J, + 51Jz) & (159J, + 1427J, + 1534J2) 

D g (8J, + 5J,) 11 12 
&J, + 19J, + 13J2 

i 

E -$(J,-Jd s(Jo -J,) 

F -4#(J, - J2) - 3$f&g(3J, + 145, - 175,) 

G -- 1960 (J, -J,) 
13(77)“’ 

420”2 (Jo + 125, - 13Jp) 
(39,039)“2 
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the same expressions are valid for the initial relaxation rates, defined by 

1 dM,(Q R,(O) = - - - . 
M,(O) dt t=o 

1151 

This is most directly shown by evaluating the operator equations [ 1301 and [131] 
of Chap. VIII in Abragam’s treatise (19). The analogous equations, for the case 
of electron spin relaxation, have previously been derived by McLachlan (22), 
who also noted that the initial rates, R,(O), may be regarded as average relaxa- 
tion rates in the sense 

1+1/z 

(Rx) = 1 C&ak- 
k=l 

The equality of R,(O) and (R,) follows directly from Eqs. [7] and [15]. Expres- 
sions [14] have been obtained, for the special case of Z = 3/2, in yet another 
way by Bull (23), who linearized the analytic expressions for Z = 3/2 in the time 
variable. 

According to the perturbation treatment, the initial rates actually apply over the 
entire decay, provided that the spectral density is only weakly frequency depend- 
ent. The rate of convergence of the perturbation expansion and thus the accuracy of 
a description of the relaxation behavior as a simple exponential decay with a rate 
given by Eq. [ 141 may be investigated by proceeding to higher orders and making an 
assumption about the functional form of the frequency dependence of J (w). How- 
ever, experimentally one does not measure the rates, Ral, to which Eq. [14] is 
an approximation, but rather apparent relaxation rates R,* obtained from the ab- 
sorption line width or from an exponential least-squares fit to the decay following 
certain pulse sequences. It is therefore more useful to assess the validity of expres- 
sions [ 141 in relation to the apparent rates R,*. 

CALCULATIONS 

We consider a nucleus which is part of a species that exchanges rapidly, relative 
to the relaxation rates, between a “bound” state (B) and a “free” state (F). The 
effective spectral density is then a weighted average ‘of the individual spectral 
densities, 

.z, = p,.J; + p,.l:, [I71 

where P, and PB are the relative populations of the two states. In most cases of 
interest, the observed nucleus resides in an ion or in a water molecule (170) in 
an aqueous solution containing macromolecules or large molecular aggregates. The 
F state then corresponds to the bulk of the solution, where it is reasonable to 
assume that Ji = .Z[. In the B state, however, the probe experiences the slower 
motion of the macromolecule so that the spectral density may become frequency 
dependent. If we assume that the correlation function in Eq. [lo] decays ex- 
ponentially, corresponding to isotropic motion, with a correlation time ?-cB, then 



NEARLY EXPONENTIAL QUADRUPOLAR RELAXATION 95 

where V,M, and 7,1 have their usual meanings (19). Due to the frequency-inde- 
pendent term in [ 171, the relative variation of the spectral density with frequency 
will be smaller and the first-order result [14] is expected to be valid over a fairly 
wide range of conditions. 

On inserting [17] and [18] into Eq. [14] we obtain 

(RI) 
- = 1 + Q[O.25: + O.S& 
PFRF 

(Rz) - 

PFRF 
1 + Q[O.3 + O.SjT + 0.2.@]. 

Here, and in the following, we use the symbol (R,) to denote the rates given by 
Eq. [ 141. In [I93 we have introduced two dimensionless quantities 

[l + (9~o~cl3Y-‘, rm 

Q3 PBXEBTCB 
PFXZFTCF ’ 

where the effective quadrupole coupling constant is defined by 

Xe = 
kY%I 1 + f 1’2 

h I 1 3 . 

Thus, (R,)/P,R,, as well as the “reduced” relaxation matrix R,IPFRF, are com- 
pletely determined by the system parameter Q and the instrumental (for fixed T& 
parameter ~~7~~. The slow-exchange limit (B state observed) obtains when Q be- 
comes so large that unity is negligible compared to the second term in Eq. [ 191. 

Reduced apparent relaxation rates R,*/PFRF were obtained, for given values of 
Q and oOTcB, through numerical diagonalization of the full relaxation matrices. With 
the resulting colle andZ?,,/P,R, we then calculated apparent rates from the linewidth 
of the Z + l/2 superposed Lorentzians (Rda) or from a least-squares fit of a simple 
exponential decay to ten points, equally spaced in magnetization from 0.95 A4,(0) 
to 0.05&f,(O), taken from the (Z + l/2)-exponential decay (R,*“). 

Figures l-3 illustrate the error made by equating the various apparent relaxation 
rates, Rp, R,*e, or Rza, to the corresponding first-order relaxation rate (R,) 
as given by Eq. [ 141. First we may note that the approximation improves consider- 
ably in going from Z = 3/2 to 5/2. Increasing Z to 7/2 results in a further slight 
improvement. The error in the longitudinal rate (dotted curves) goes through a 
maximum for oo7-ca of the order unity. In a i3sLa (I = 7/2) relaxation study of 
albumin solutions (7) the expression for the first-order longitudinal relaxation rate 
(R,) was used. For this case, with wo~CTcB = 2 and an estimated Q > 100, Figure 3 
shows that the error is not less than 8%. Although, for given Q and m07cB, the 
longitudinal decay is more nearly exponential (the dominating amplitude is closer 
to unity) than the transverse decay, it is seen that the first-order expressions may 
be less accurate in the longitudinal (dotted curves) than in the transverse (dashed 
curves) case. This is because the minor components are associated with larger re- 
laxation rates in the longitudinal case. 

When the apparent transverse relaxation rate is obtained from the linewidth 
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lag a 

FIGS. l-3. The ratio of the first-order relaxation rate (R,), given by Eq. [ 191, and the apparent rates 
R T” (dotted curves), RF (dashed curves), or Rza (solid curves), for indicated spin 1. The dimensionless 
parameters are Q, which is defined by Eq. [21], and OJ~T~~, the value of which appears beside each curve. 

(solid curves) the accuracy of the approximation deteriorates, particularly for 
I = 3/2, because the slow components are weighted heavier in a linewidth measure- 
ment than in a Carr-Purcell R2 measurement. Large differences between Rga 
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FIGURE 2 
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FIGURE 3 

and Rze have been observed for 23Na (I = 3/2) in polyelectrolyte solutions (15). 
In electron spin resonance, it is customary to obtain RB from the peak-to-peak 
distance in the derivative spectrum. The influence of the slowest component is 
then even greater. In fact, R$ measured in this way is nearly equal to the slowest 
component; e.g., forl = 5/2 the difference never exceeds 12%. This fact has been 
utilized in an ESR study of Fe3+ (S = 5/2) solutions (5). 

For a given ratio (R2)/Rza, the deviation from Lorentzian lineshape becomes 
less pronounced with increasing spin I. It is doubtful whether, within the range of 
Figs. l-3 (5 15% error), the slight (510%) increase in amplitude in the wings of the 
absorption curve can be detected, even for I = 3/2. Moreover, within this range of 
error, the standard deviation of the exponential fits for determination of RTe or 
RZe is too small (~2%) to serve as an indicator of multiexponentiality. In the 
absence of reliable estimates of e and wOTcB, the first-order expressions [ 141 should 
therefore be applied with caution. 

The correlation time Tc. for the B state may be obtained from the dispersion of 
either the longitudinal or the transverse relaxation rate. More commonly, however, 
TcB is calculated from the ratio of excess longitudinal and transverse rates at a single 
frequency. Since the ratio (R,)/R,* is larger than one for the longitudinal as well 
as for the transverse rate, one would expect a cancellation effect in the error when 
evaluating TcB by this latter method. That this is indeed the case is shown in Figs. 
4-6. Again, the accuracy is seen to improve dramatically in going from I = 312 to 
5/2. However, if RB is obtained from a Car-r-Purcell sequence (exponential fit) 
the accuracy is roughly independent of 1. In agreement with previous calculations 
forl = 3/2 (24), Fig. 4 shows that, in this case, the error is negligible for 0~7~~ 5 1.5. 

The inherent anisotropy of the macromolecule-solvent interfacial region often 
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FIGS. 4-6. The ratio of the actual correlation time ree and the apparent correlation time, 4, obtained 
by equating the first-order relaxation rates with the corresponding apparent rates: Rre and Rfe 
(dashed curves) or Rp and Rta (solid curves), for indicated spin I. The dimensionless parameters 
are Q, which is defined by Eq. [21], and ~,,r~a, the value of which appears beside each curve. 

makes it convenient to regard the averaging of the quadrupole interaction as a 
two-step process: a fast local, slightly anisotropic reorientation and a slower, more 
extensive motion (25). If the local motion is sufficiently rapid (extreme narrowing) 
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FIGURE 6 

it will not contribute to the multiexponentiality, whereas for the slow motion the 
quadrupole coupling constant should, under certain conditions (25), be multiplied 
by an anisotropy factor A, the magnitude of which usually lies in the range 0.01 to 
0.1. Thus by multiplying Q, as given by Eq. [21], by a factor A’, one obtains from 
Figs. l-3 upper limits, corresponding to negligible contribution to the relaxation 
from the fast local motion, to the error appropriate for this model. 

CONCLUSIONS 

The perturbation treatment shows that the relaxation behavior is well described 
as a simple exponential decay with a rate given by Eq. [ 141, provided that the 
effective spectral density is only weakly frequency dependent. Calculations per- 
taining to a fast-exchange two-state model show that, for I = 5/2 and 7/2, the first- 
order rates are accurate to within a few percent for Q values of the order of unity or 
less. For I = 5/2 and 7/2 it seems, therefore, that the first-order expressions [14] 
will be useful in all cases, except, possibly, for large populations of species which 
are rigidly bound to large macromolecules. 
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