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Brief Communication

On the Cyclotron Resonance Mechanism
for Magnetic Field Effects on
Transmembrane lon Conductivity

Bertil Halle
Physical Chemistry 1, University of Lund, Sweden

The cyclotron resonance model, recently proposed to account for physiological response
to weak environmental magnetic fields, is shown to violate the laws of classical mechanics.
Further, it is argued that the ubiquitous presence of dynamic friction in fluid media
precludes significant magnetic effects on membrane ion transport.
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The possibility that weak electromagnetic fields in the environment can interfere
with biological cell function deserves serious consideration. While a variety of such
effects have been reported, their mechanistic basis remains to be established [Adey,
1981]. Motivated by the experimental finding [Blackman et al., 1985] of an enhanced
calcium ion efflux from brain tissue subjected to a combination of weak static and
low-frequency oscillating magnetic fields, Liboff and McLeod have proposed a
molecular mechanism [Liboff, 1985a,b; McLeod and Liboff, 1986; Liboff and Mc-
Leod, 1988]. The alleged basis of this so-called cyclotron resonance model (CRM) is
that ions moving through helical membrane channels in the presence of a static
magnetic field B exhibit a resonance frequency, w, = (Q/M)B, at which energy can
be transferred from an oscillating electromagnetic field to the molecular system. A
variety of experimental results, interpreted as supporting the CRM, have recently
been described [Thomas et al., 1986; Smith et al., 1987; Liboff et al., 1987]. The
purpose of this report is to point out that the CRM violates the laws of classical
mechanics and, hence, cannot explain the observed effects. Furthermore, it is argued
that the role of dynamic friction has been severely underestimated.

All classical resonance phenomena share two essential ingredients: i) a periodic
motion in the system with a natural frequency, and ii) an external time-dependent
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driving force which, when tuned so that the driving frequency matches the natural
frequency, can excite the natural mode of motion and, hence, transfer energy to the
system. The natural motion may be the swinging of a pendulum, the Larmor preces-
sion of a nuclear magnetic moment in a magnetic field or, as in the CRM, the motion -
of an ion through a helical membrane channel in a static magnetic field. In the CRM,
the natural (cyclotron) frequency exists only in the presence of a magnetic field. For
the CRM to be valid, it is thus necessary that the ionic motion be affected by the
static magnetic field. If this is not the case, then, of course, the time-dependent
electromagnetic field cannot produce a resonance phenomenon. To disprove the
CRM, it is therefore sufficient to consider the first ingredient of the proposed
resonance mechanism, viz. the natural (cyclotron) motion induced by the static
magnetic field.

We thus consider the motion of an ion of mass M and charge Q in the presence
of static electric (E) and magnetic (B) fields. We shall assume that the fields are
uniform; this simplifies the algebra, but is not essential for our arguments. The ion
obeys Lagrange’s equations of motion [Goldstein, 1950]

d/aL) oL
dt <6_®> Taq @

where the q, are independent generalized coordinates (1 < a < f = number of
degrees of freedom) and g, = dq,/dt. The Lagrangian is given by

L=%MvV+Qr-E+%QrXxv-B, Q)
where v = dr/dt is the velocity of the ion.

For the case of unconstrained motion (f = 3), it is easily shown that equations
(1) and (2) reduce to Newton’s equations of motion

dv Q
'&‘;=M—E+wac, 3
with the cyclotron frequency
Q
@ =1, B (C)

The solution to Equation (3) in the absence of electric field is well-known [Jackson,
1975]. The ion, with initial velocity components v, and v) (with respect to B), executes
a uniform rotation around B with angular frequency w, superimposed on a uniform
translation along B with velocity v,, thus tracing out a helical path of radius R =
v}/, and pitch h = 27 vj/w. This simple example illustrates the crucial fact that a
magnetic field can alter the direction of the ionic velocity, but not its magnitude (the
energy of the system is conserved).

In the CRM, the ion is constrained to follow a helical path with radius Ry and
pitch hy. The position of the ion is then given by r = (R cosf, Ry sinf, Af), where
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6 is the angle of rotation around the helix axis and hy = Ay/(27). To include this
constraint in the dynamical description, we simply substitute r into Equation (2) to
obtain the Lagrangian

L R3 + h)~! = 1% M6 + QIk(Ex cosd + E, sinf) + 7 E, 6]
+ % Q Ry {7 [By(sinf — 6 cosf) 6 — By(cosf + 6 sinf) 0 + « B, é}, )

where we have introduced the helix curvature k = Ro/(R§ + A3) and torsion 7 =
ho/Rg? + ho?). Inserting this Lagrangian into Equation (1) (with f = 1 and q = 0), we
obtain the equation of motion for an ion in a helical channel

2
j—t20+%[lc (Ex sinf — E, cosf) — 7 E,] = 0. ©)

Equation (6) shows that the motion of the ion is entirely unaffected by the magnetic
field. This conclusion remains true for motion along an arbitrary (not necessarily helical)
prescribed space curve in the presence of an arbitrary (not necessarily uniform and not
necessarily static) magnetic field. In fact, this follows directly from the observation that
the magnetic force, Q v X B, is orthogonal to v and that the motional state of a particle
with a single translational degree of freedom can be altered only by a force with a nonzero
component along v. In the absence of an electric field, the ion thus maintains its initial
state of motion through the helix. In contrast, Liboff insists that the ion experiences a
magnetic force of magnitude Q v B, which causes it to move through the helix with the
natural (cyclotron) frequency o, given by Equation (4). This erroneous conclusion was
deduced from a balance equation for the radial (perpendicular to the helix axis) component
of the forces acting upon the ion in the channel [Liboff, 1985b]. However, since the ion
encounters an infinite (in the model) constraining force at the channel walls, a purely
radial force cannot affect its motion. In another paper, Liboff seeks to consolidate his
claim by deriving the equation of motion for an ion in a helical channel under the influence
of a static magnetic field [Liboff, 1985a]. Again, he finds that the static magnetic field
drives the ion through the channel with a natural frequency w.. However, as is evident
from Equation (6) with E = 0, (t) = 6(0) independently of the magnetic field. Liboff’s
derivation is based on Newton’s equations of motion. This is a force balance equation
and, hence, must include all the forces experienced by the ion, including the constraining
force that keeps the ion on its prescribed helical path. Liboff’s erroneous conclusion is a
direct result of his omission of this constraining force. In the present treatment, by
adopting the Lagrangian formulation of classical mechanics, we implicitly include the
constraining force via its (prescribed) effect on the motion of the ion.

If the translocating ion were not constrained to a one-dimensional path through the
membrane, a magnetic field could conceivably affect its motion. To explore this possibil-
ity, we consider the case of completely unconstrained motion. To account for the dynam-
ical coupling of the ion with its fluctuating molecular environment, we replace Equation
(3), which applies to ionic motion in a vacuum, by the Langevin equation [van Kampen,
1981]

dv Q
E=ME+VXwC—wfV+R(t). a
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In this equation, the fluctuating environment appears through the random force
M R(t) (with zero mean and no temporal correlation), which drives the thermal
motion, and the associated dissipation force { v, which returns the acquired energy to
the medium. The ionic friction coefficient { (= M wy) is assumed to be unaffected by
the applied fields.

The transmembrane current is proportional to the ensemble-averaged steady-
state velocity v®, which satisfies

%E VX @ — wp V= 0. ®)

Hence, the steady-state velocity components (with respect to B) are

vi = QE/¢, (%a)
=@+ ™% Q E|/¢, (9b)

where o = w/wy = Q B/{ is a measure of the relative importance of the magnetic
and frictional forces.

On the basis of the current knowledge about the structure and dynamics of
biological membranes and channel-forming molecules [Hille, 1984; Mackay et al.,
1984; Jordan, 1987; Skerra and Brickmann, 1987], it is clear that the translocating
ion experiences an essentially fluid environment of mobile water molecules and
polypeptide structures strongly coupled to the fluctuating lipid membrane interior.
The ionic friction coefficient { should therefore approach that of a dense fluid.
Accordingly, we take wy = 104 s™! [Wilson et al., 1985], which, for an ion in the
geomagnetic field (B = 50 uT), corresponds to o = w/w; = 10%/10 = 10712,
From Equation (9), it is evident that the magnetic effect is completely negligible
(since o® =~ 10™2* < 1). This conclusion remains valid even if the estimated friction
is too high by several orders of magnitude (which is unlikely).

In conclusion: we have demonstrated that the cyclotron resonance model is
untenable. If the ionic trajectory is prescribed, the magnetic effect vanishes identi-
cally. And even if the motional constraint is relaxed, dynamic friction ensures that
the magnetic effect is utterly insignificant. It seems clear, therefore, that the origin of
a physiological response to a weak magnetic field should be sought within the realm
of collective phenomena, rather than at the level of local single-ion dynamics.
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