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Cross-relaxation between macromolecular and solvent spins:
The role of long-range dipole couplings

Bertil Halle
Department of Biophysical Chemistry, Lund University, SE-22100 Lund, Sweden

(Received 29 August 2003; accepted 22 September)2003

Nuclear spin relaxation by intermolecular dipole—dipole interactions between macromolecular and
solvent nuclear moments forms the basis of a widely used method for investigating macromolecular
solvation. In particular, intermolecular cross-relaxati@mr nuclear Overhauser effe¢NOE)]
between protein and water protons has been used to probe the mobility of water molecules
interacting with the protein surface. The method rests on the assumption that the intermolecular
NOE is of short(4—5 A) range and thus provides information about the mobility of individual water
molecules in hydration sites near the monitored protein protons. Here, we present a theoretical
analysis of the spectral density functid®DF) that governs the cross-relaxation rates in the
laboratory-fixed and rotating frames. In contrast torthé dependence of the intramolecular NOEs
used for structure determination, the intermolecular NOE is shown to be long-ranged with important
contributions from thousands of water molecules. For a consistent interpretation of such NOEs, it is
necessary to use a model that explictly incorporates motionally retarded hydration water molecules
as well as unperturbed bulk water molecules. We formulate a diffusion model with a nonuniform
solvent mobility and solve it to obtain an analytical expression for the SDF. Calculations with this
nonuniform diffusion model demonstrate that intermolecular NOEs with surface protons are
dominated by long-range dipole couplings to bulk water and therefore provide little or no
information about hydration dynamics. The physical basis of this unexpected phenomenon is that
the characteristic time scale for relaxation-inducing fluctuations is longer for the more numerous
remote water molecules, despite their higher mobility. The analytical results presented here are
generally applicable to intermolecular dipolar relaxation of like or unlikaclear or electron

spins in a variety of experimental situations. ZD03 American Institute of Physics.
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I. INTRODUCTION ment was presented,where the molecular excluded volume
) . ) ) was introduced via a reflection boundary condition for the
The dipolar interaction of nuclear magnetic moments, it sion equation, thereby ensuring that the diffusion propa-
rendergd tlme-depend_ent by thermal mglecular mptlons_, Iﬁator evolves towards the corrdstep-function equilibrium
tlr;'e T%n Sa%udrgf’eN?I ?rlr:]o;eg;a)t(r?goc;r(i)c: usspl?ntlé rzagtijglr'ge?h!:epair correlation function. The model was further elaborated
’ ’ by allowing the spins to be located away from the molecular

couple the nuclear spins to the molecular degrees of freedorgemers in which case also molecular rotation modulates the

the magnetic dipole—dipole interaction is unique in that itintermolecular dipole couplingSpin eccentricity had previ-
can be modulated by both translational and rotational mo- P P P Y P

tions. If the dipole-coupled spins belong to the saigid) ously been taken into account in a less general treatfient.

molecule, only the orientation of the internuclear vector can Th? _d|ffu5|on theory of |_ntermo_lecular d'po".”“ relaxation
fluctuate and the only relevant molecular motion is rotation.V8S originally developed with liquids and solutions of small
molecules in mind. For such applications, it was of interest

The theoretical treatment of this intramolecular case is rela- X N
tively straightforward. If the coupled spins belong to differ- to further generalize the model by describing intermolecular

ent molecules, also the length of the internuclear vector cafP"ces Jn.a more realistic way than by an excluded

fluctuate. The treatment of this intermolecular case is mordolume:"“More recently, the theory has been used to inter-
complicated, involving not only the rotation of the two mol- Pret the intermolecular nuclear Overhauser eff8l<DE) pro-
ecules but also their relative translational motion. duced by dipolar cross-relaxation between macromolecular
In the first theoretical analysis of intermolecular dipolarand solvent spins. In particular, the interpretation of numer-
relaxation, the translational motion was modeled as a rando@us intermoleculatH—'H NOE studies of protein hydration
walk on a lattice® For liquids, a continuous diffusion model rely on the diffusion theory of intermolecular dipolar
is more appropriate. To prevent the dipole interaction fromrelaxation’™*? The logic underlying the interpretation of
diverging, it is then necessary to introduce a distance of closvater—protein NOEs goes as follows. Because the dipole—
est approach between the two spins. In the first continuundipole coupling decays with the inverse third power of the
treatment, this was done by introducing a step-function paimternuclear separation, the cross-relaxation rate, which in-
correlation functior. Subsequently, a fully consistent treat- volves the square of the dipole coupling, is short-ranged.
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Accordingly, intramolecular NOEs are usually observed only
for protons separated by less than 4 or 8 For the same
reason it is generally assunedf that, although the watéH
resonance is due to all water molecules in the sample, the
intermolecular NOE is due to only one or a few water mol-
ecules near the monitored protein proton.
While the square of the dipole coupling between a pro-
tein proton and a water proton at a distamcscales as ~°,
the number of water protons at a given distanéecreases
as r? (ignoring the short-ranged excluded volume effect
Moreover, the characteristic time for modulation of the ori-
entation of the internuclear vectoby translational diffusion
of a water molecule across a given solid angle also increases
asr2. The measured cross-relaxation rate, which has contri-
butions from water protons at all separatiands thus ob-
tained by integrating the product ®xr2xr2=r"2 overr.
Consequently, the zero-frequency spectral density that enters
the cross-relaxation rate scales as the inverse of the distance
of closest approachrather than as the inverse sixth power.
In the usual interpretation of protein-water NOESs, the
quantity of primary interest is the ratior /og of the
laboratory-frame and rotating-frame cross-relaxation rates
deduced from the measured cross-peak intensitiéanith
the aid of the diffusion modeland plausible values for sev-
eral model parameters, the translational diffusion coefficienkiG. 1. Definition of model parameters. The parameteserves both to
D of the water molecules is extracted. In the final step, docate the absorbingSec. Il B or reflecting(Sec. Il B boundary and to
water residence time pertaining to a hydration site near thﬁerl?e the thickness of the solvation shell with perturbed dynaiiSes.
observed protein proton is calculated from the Einstein—
Smoluchowski relatiorr,.e= 62/(6D+), with the root-mean-
square displacemer@taken as 4 A" The validity of this  dependence on geometrical and dynamic model parameters.
procedure rests on the assumption that the NOE is shortwe also investigate the interplay of intramolecular and inter-
ranged. However, as argued here, this is not the case. Undgifolecular NOE contributions, the former arising form buried
most conditions, the NOE is thus governed largely by theyater molecules or labile protein protons in fast exchange
diffusion of bulk water molecules that are not affected by thewith bulk water. Finally, in Sec. IV, we discuss the implica-
protein. Given the long-range nature of the NOE, a consistions of the theoretical results for the use of intermolecular
tent interpretation of experimental NOE data in terms of hy-NOEs to study macromolecular solvation.
dration dynamics requires a model that allows the water dif-
fusion coefficient in the hydration layer next to the protein| THEORY
surface to differ from that in the bulk solvent. It is therefore .
necessary to generalize the diffusion model of intermoleculaf*- Pynamic model
dipolar relaxation to the case of a solvent with nonuniform  We consider the spin relaxation induced by magnetic

mobility. dipole—dipole couplings between a macromolecular dpin
The derivation of the spectral density function for the and Ng solvent spinsS (see Fig. L Thel spin is located a
nonuniform diffusion model is presented in Sec. Il. In thedistancep from the center of a spherical macromolecule of

first three subsections, we formulate the model and define thediusa, . EachS spin is located at the center of a spherical
mathematical problem. In the process, we present a novabolvent molecule of radiuag. The distance of closest ap-
treatment of translation-rotation decoupling. In the following proach between the centers of thand S spheres i =a,
subsections, we obtain exact analytical solutions of four dif-+ag. Thel-S internuclear vector has a magnitude that
ferent versions of the model, including the known case ofranges frond=b— p, the distance of closest approach of the
unrestricted uniform diffusiorfSec. 11 D). Different bound- | and S spins, to infinity. Because thiespin is located off-
ary conditions are used to examine the range of the intermazenter, the length and orientation of the internuclear vector is
lecular NOE(Sec. Il B and to model surface accumulation modulated by two distinct motions: rotational diffusion of
of solvent species such as counterions or cosolvéd¢s. the macromolecule, with rotational diffusion coefficiéhg,

IIF). In Sec. Il G, we present the spectral density for a sol-and translational diffusion of the macromolecule and solvent
vent with a step-function mobility profile. The results ob- molecules, withrelative translational diffusion coefficient
tained in Sec. Il are illustrated in Sec. Ill by numerical cal-D+. In all previous treatments, it has been assumedihiat
culations pertaining to cross-relaxation between water and spatially uniform. The essential new element of the present
protein protons. In particular, we examine the range of theanalysis is to allow for a dynamic perturbation of solvent
spectral density and cross-relaxation rates, as well as themear the macromolecule. We thus stipulate that the relative
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diffusion coefficient takes the vaILD(Tl) when the center of where j(TL)(w) is the Fourier—Laplace transform of the
the S sphere is within a distancé=c—b of the accessible translational TCF in Eq.2.6). The complex-valued fre-
surface of thd sphere and a valu(TO) elsewhergsee Fig. quencyw(R") is defined as
1).

|_ .

Within the motional-narrowing reginmethe spin relax- wi'=w—iL(L+1)Dg, (2.9
a.tlon beh‘f’“’"’r 'S fullyggatermmed by the rank-2 spectral deni/vhereDR is the rotational diffusion coefficient of the mac-
sity function (SDF J'“/(w). In general, the rank- SDF romolecule
JY(w) is the real part of the complex-valued SDF '

) . It is straightforward to generalize the model to allow
(L) —
::70rre(g))(,)nc(ijier?n?icrjn:SaLTscgrorzIr:;[ironL?L?:\?:(t:iZTtCr?:r)]sg?{)r? ;),f thealso theS spin to be located off-centdrThe additional pa-
P 9 s rameter thereby introduced would hardly make the model

YR . W more realistic. An off-center location of ti&spin only af-
T )= o drexp—ier)G (7). (2D fects the TCF on the picosecond time scale of solvent rota-
tion (see Appendix where the force-free diffusion equation
The TCF for intermolecular dipolar coupling ts Sspins,  (see below is not expected to be quantitatively accurate.
whose motions are taken to be uncorrelated, is given by  Here, we focus on the behavior of the TCF on longer time

G () = 4mNg(FLo(ro) FLolr)). (22  scales.

The angular brackets in Eq.2) signify an ensemble aver- € Diffusion propagator

age andr ((r) is a rankk solid harmonic The ensemble average in EQ.6) can be expressed as
FLon=r"t Dy ((Q), (2.3

whereY | o({2) is the corresponding spherical harmonic and

() denotes the spherical polar angles that specify the orien-

tation of the internuclear vector with respect to the

laboratory-fixed frame. For a solvent of uniform density, the equilibrium probability
density f(Rg) is 1N for Ry=b and zero elsewhergFor
Ng>1, the pair correlation function ig(R)=Vf(R).] The

B. Translation-rotation decoupling propagatorf (R, 7|R,) is taken to obey the force-free diffu-

) i _sion equation
The rank-2 TCF of primary interest here can be written

G2 (7)=47Ng(F,Ro—po)F2,dR—p)). (2.9 (%f(R,rl Roy)=V-D(R)Vf(R,7|Ry) (2.10

The vectorR connecting the centers of theand S spheres

(see Fig. 1 is only modulated by translational diffusion, With the initial condition

whereas the offset vectgr, of fixed lengthp, is only modu- _

lated by rotational diffusion. To an excellent approximation, f(R.ORo) = 8(R—Ry). (217
macromolecular rotation and solvent—macromolecule relacombination of Egs(2.1) and (2.9) yields
tive translational diffusion can be treated as statistically in-
dependent processes. As shown in the Appendix, the two
motions are then decoupled in the sense that the TCF can be
expressed as a sum of products of rotational and translational

G%—L)(T):47Tst dRof dR f(Ro)

X f(R,7|Rg)FL o(Ro)FL o(R). (2.9

J(TL)(w)=4TrnsJ',dRof dR f(R,®[Ro)

partial TCFs> XFLo(Ro)FLoR), (2.12
om whereng=Ng/V is the S-spin number density and the prime
G (r)=— >, (L+1)(L+2)(2L+3)p? means that the integration domain excludes the refgn
3 5o <b. In Eq.(2.10, D+ is the relative translational diffusion
« G%L)(T)GSI_LJrZ)(T). (2.5 coefficient of the solvent molecules with respect to the mac-

romolecule. In a region of uniforr®+, the Fourier—Laplace
The purely rotational TCISE)(7) is given by Eq.(A5) and  transformed propagatdi(R, w|R,) satisfies
the purely translational TCB(TL)(T) corresponds to the case

where also the spin is located at the center of its sphere, (V2= «?)f(R,w|Rg) = = 8(R—R)/Dy (2.13
GH (1) =4mNs(F o(Ro)FL o(R)). (2.6  with
Combination of Eqs(2.1) and (2.5) yields for the total k=(iw/D7)Y2 (2.19
SDF,

The symmetry of the problem requires the general solu-

1 tion to Eq.(2.13 to be of the form
TA@)=TP @)+ 55 (L+1)(L+2) 219
L=l e’e)

X(2L+3)p2Lj£|—L+2)((1)E:¢L)), (27) f(R,wlRo):NE:O pN(R|R0)PN(COS‘}/), (215
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where Py(z) is a Legendre polynomialy is the angle be-
tweenR andR,, andpy(R|Rg) is a linear combination of
modified spherical Bessel functions:

prn(RIRg) = an(Rp)in(kR) + Bn(Ro)kn(«R). (2.16

We now substitute Eq$2.3) and(2.15 into Eq.(2.12, ex-
pandPy(cosvy) with the aid of the spherical harmonic addi-

tion theorem, and use the spherical harmonic orthogonality

relation to carry out the angular integratiorisThe result is

167°ng (= [ n

(2.17)

T (w)=

Cross-relaxation 12375
iwb2 1/2
{= Kb:< D, (2.22
In particular, the rank-2 SDF becomes
1+ !
2, . 16mng 2t -
J7(@)= 575 h (2.23

1+ +4 2+1 3
{tgitg?

in accord with the known resuit}

The remaining mathematical problem is to determine the COE Restricted uniform diffusion with absorbing

efficientsay(Rg) and Bn(Rp) in Eqg. (2.16) from the bound-

boundary

ary conditions on the propagator and, then, to carry out the

spatial integrations in Eq2.17).

D. Unrestricted uniform diffusion

One of our objectives here is to determine the contribu-
tion to the SDFJ®)(w) from relatively distantS spins. A
convenient way to assess the importance of such long-range
dipolar couplings is to introduce an absorbing boundary at a
variable radial distance from the center of the macromol-

Previous treatments have considered the case of an infecule(see Fig. 1 In this way, we can isolate the contribution

nite diffusion space with uniform diffusion coefficient
D+.1*5The two boundary conditions are then

J
ﬁf(RaT|RO)|R=b=01 (2.183

f(R,7|Ro)|r_... = finite. (2.18b

On account of the singularity in Eq2.13 at R=R,, we
must treat the caseR<R, and R>R, separately. FOR
<Ry, the boundary conditio2.183 yields

pr(RIRg)=A[k{(«b)i (kR)—i[(kb)k («kR)],
(2.193

wherek| (kb)=dk _(2)/dZ|,- . For R>Rg, the boundary

condition (2.18bH yields
pi (RIRg) =Bk (kR) (2.19h

becaused | (kR) diverges forR—oo. The Green’s function
that satisfies Eq(2.13 has the following properties &R

:RO:
pr (Ro|Ro)=pi (Ro|Ry), (2.20a
g y _2L+1
ﬁ[PL(R|Ro)—PL(R|Ro)]|R:RO—m- (2.20b

These two relations determine the coefficieAfsandB, in
Eqg. (2.19.

Inserting these results into EQ.17) and performing the
integrationgwith the integration domain subdivided to avoid
the singularity aR=R;), we obtain forL=1;

4ang 1 1 (L+1)
Db 2 2|2L-1 {2

L+1) K -t
X[l (L+1) Kisqpd) ]
& Kioyd)
whereK (¢) is a modified Bessel function and

T (w)=

(2.21

to J®(w) from solvent spins located in the shelR=<c.
Mathematically, this is accomplished by replacing Eg.
(2.18b by the absorption boundary condition

f(R,7|Ro)|r=c=0. (2.24

Furthermore, the equilibrium probability densifyRy) is
now 1V for b<Ry=<c and zero elsewhere. This simply
means that the upper integration limit f8; andR in Eq.
(2.17 now is c rather than infinity. The boundary condition
(2.24) is satisfied by

PL>(R| Ro)=B[KkL(kC)i (kR) =i (kC)k (kR)].
(2.25

The coefficientsA, in Eqg. (2.199 and B, in Eq. (2.25 are
determined by the matching conditiof&20).
Proceeding as in the unrestricted case, we obtain from

Eq. (2.17),

4mng 1 [1-N\22"1 (L+1)(1+N2Th
(L= S_
JT (w)_DTbZL—3 ézZ( 2L—1 §2
. 1 2(L+ DAY (L+1)2 »
QL(I/k) §4 gS QL(I)
2L
—TQLa'k')]) (226
with
QLK) =iL(HKL(ZIN) =KL (DiL(EIN), (2.273
QLK) =1{ (OKL(LIN) =K (i (LIN), (2.279
QLK) =1{ (DKL (ZIN) =K (D[ (LIN), (2.279
and
A=blc. (2.28
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In the limit c—«, Eq. (2.26) reduces to Eq(2.21), as re- N A0
quired. In the limitc—b, we haveQ, =¢"2 and 7 {!(w) I (w)= sziz 1+ Sd(L) 2 (2.34
=0, as expected. Fdr=2, Eq. (2.2 yields in the zero- ©Tsd)
frequency limit, with the rankk surface-diffusion correlation timer(y
o 16mns[  N(81—30M3+5N1+24\°) =b?[L(L+1)D~].
J(0)= 2D.b| " 16(3+2)\5)
(2.29

G. Unrestricted nonuniform diffusion

F. Restricted uniform diffusion with reflecting

An important motivation for the present work is the need
boundary

for a consistent theoretical treatment of dynamic solvation
Throughout this work, we consider only force-free trans-effects in the context of intermolecular dipolar spin relax-
lational diffusion and, by implication, a spatially uniform ation. To this end, we generalize the dynamic model used in
distribution of solvent molecules. This description may notSecs. I D—II F by allowing the relative translational diffu-
be appropriate fofS spins belonging to one of the compo- sion coefficient to take different values in a “solvation layer”
nents of a binanfor multicomponentsolvent, for example, of thicknessc—b and in the “bulk” solvent. We thus stipu-
counterions of a highly charged macromolecule or cosolveniate that
molecules that accumulate at the macromolecular surface. In
such cases, the force-free diffusion equation should be re- D.— (2.39
placed by a Smoluchowski equation with a drift term involv- T | pw R=c. ’
ing the mean force acting on the spin-bearing solvent mol-
ecules. In general, this can only be done numerically, e.g., The Fourier—Laplace transformed propagator is obtained
using a finite-difference approacti? If most of theSspins by solving Eq. (2.13 separately for each homogeneous
are confined to the surface region, a somewhat crude, btiegion and then matching the resulting propagators
' iption i i i i inaf@(R,»|R,) and fH(R,w|R requiring that they an
analytical, description is obtained by imposing a reflectingf”’(R,»|Ro) and f'*(R,w|R,) by requiring that they and
boundary at a distance from the center of the macromol- the associated fluxes vary continuously across the surface
ecule. TheS spins are thus confined to a surface layer ofR=c.** We thus impose the continuity conditions
thicknessc—b.
The treatment for this case closely parallels that in Sec. pL”(cIRo)=pi”(clRo), (2.369
Il E, except that the second boundary condition now reads
(1) J (1) —no J (0)
D5 (R|RO)|R=C_DT é,_RPL (RIRo)|Rr=c-

J JRPL
a—Rf(R,T| Ro)|r=c=0. (2.30 (2.36Dh
This condition is satisfied by For each of the two propagators, we must investigate
- ) ] ., separately the cases whdRg is <c or >c and whereR; is
pL (RIRo) =By [k[(kC)i_(kR) —i[ (kC)k (kR)]. <R or >R. Altogether, we must therefore determine the

(2.3 expansion coefficients in Eq2.16 in six cases. After a

The coefficientsA, in Eq. (2.193 andB, in Eq. (2.3]) are  lengthy calculation, we obtain from E.17),
determined by the matching conditiof%20 as before. Not-

. . . 47N 1 1 .
ing that theS spin numsber gensny now ergndscoaccord- J(TL)(w) = D(O)szS‘3 A 12,0, _4(ik)
ing to ng=3Ng/[4m(c’—b®)], we obtain with Eq(2.17), T o
3N 1 [1-\2"1 1{
(L) )= S il - NZE7270k _1(ZoIN)X
\7T ((1)) DTbZL()\f?’—l) gz( 2L—1 ?IE gO L 1(§o ) L
(L+1)(1-Nh (L+1)? P L“k " /A)}V ]) 2.3
§2 §3Q|_(i'k') 1%L {0 L—-1\%0 L ’ .
2)\|_+2 . . . i
x| QL(ik" )+ 220, (K'i) + > ]) ¥;/:S(a:re we have introduced the following auxilliary quanti
(2.32 Qu-1(ik)=ip1({k—1(L1/N)
with A andQ, (i'k") as defined in Sec. IIE, and —Kk (&)L 1(LIN), (2.383
ik')=i K[ (ZIN) =K (D)i][(LIN), 2.33 , ,
QUIIZIORIEZIAOTEN, 23838 g i (k@) —k (LMK ),
QLKD) =K ()i (ZIN) =T{(DKL(ZIN). (2.33b (2.38D
In the limit c—c, Eq. (2.32 reduces to Eq(2.21), as re- SK= k! (Lo/N)iL (L1 IN) =K (Zo/N)if(£1IN),  (2.389
quired. In the limitc—b, the real part of Eq(2.32) yields o . )
the rankt SDF for surface diffusion on a sphefre, SU =Y (Lo/MKL(L1IN) =i (Lo/NK((L1/N), (2.380
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S =i { (LML) =iL(L/NI{(L1/N), (2389
TE=k{ ({)S'—i[(£)S%, (2.38
T =k ({)S —i{ (£S5, (2.389
UK 1=k 1(Z) — ATk _1(£1/N), (2.38h

=i (L)AL, (2.38)
Vi=k{ (LUl +i{ (LU g, (2.38)
XL=iL 1L/ TR 1(Lo/M)TL (2.38K
Y =SUL - +SIUE (2.38)

The quantities{, and {; are defined as in Eq2.22, but
with Dt replaced by either of the diffusion coefficients in Eq.
(2.35. Finally, \=b/c as before and

y=[D{P/DM]M2 (239

In the special casB{¥=D{", Eq.(2.37 reduces correctly
to Eq.(2.22).

Ill. CALCULATIONS

Cross-relaxation 12377

TABLE I. Default parameter values used in calculations.
Parameter Symbol Value Units

Solvent spin number density ns 2/30 A3
Solvent-accessible solute radius b 15 A
Distance of closest—S approach d 3 A
Thickness of solvation layer S 3 A
Bulk solvent diffusion coefficiefit D 2x10°° m?s?
Dynamic perturbation in solvation layer D{®/D{ 5
Solute rotational correlation tirfie TR 7 ns
Larmor frequency 128 600 MHz
Dipolar coupling constafit Kis 57x10"  A®s?

#Proton density in water at 20 °C.

PFor water at 20 °C.

‘Estimated for a globular macromolecule of radium water at 20 °C.
9For two protons.

=3 A and rr=7ns, Egs.(3.2 and (3.3 yield K,sJ(0)
=547s' 0,=-0546s, andog=1.10s'. The ratio
of the intramolecular cross-relaxation rates ig /oy
—0.498, close to the slow-motion limit of-1/2. In the
opposite, fast-motion or extreme-narrowing, limit,
o log=1.

In this section, we use the theoretical result; of Sec. Il toA_ Uniform diffusion
calculate the rank-2 SDF and the cross-relaxation rates that

can be determined from nuclear Overhauser effeDE)
experiments® To facilitate comparison with experimental

Because of the” ® dependence in E¢3.3), the intramo-
lecular NOE is short-ranged: if tHespin couples to sever8

results, all calculated SDFs have been multiplied by the dispins in the same molecule, the NOE tends to be dominated

polar coupling constant
2

Kis= 3.9

Mo
yp fiy s

Here, y, and yg are the magnetogyric ratios of the two nu-
clides andug is the vacuum permeability. All calculations
refer to the homonucleaiH—1H case, withy,=ys=2.675
X108 rad (Ts) L.

by the nearesS spin. The case of an intermolecular NOE
between a macromolecular spiand many solvent spirfSis
qualitatively different in two ways. First, the high uniform
density of solvent spins effectively extends to infinity. While
distant S spins are only weakly coupled to tHespin, the
number ofS spins at a given distanaeincreases as®. The
distance-dependent factor ® in Eq. (3.3 is thereby
changed tor ~4. Second, in contrast to the intramolecular

The cross-relaxation rates measured in the Iaborator?ase’ the orientational randomization of differenvectors

(Zeeman and the rotatingspin-locked frames are related to
the rank-2 SDF d§

0. =K,g[0.6 P (w,+ wg) — 0.1 I (w,— ws)],
or=K,5[0.32(w)+0.23?(w,— wg)],

(3.29
(3.2b

akes place on different time scales. Qualitatively, the rel-
evant time scale is given by the correlation time for surface
diffusion on a sphere of radius As noted below Eq(2.34),

this correlation time is proportional t?. The total contri-
bution to the zero-frequency SDH?)(0) from I-S spin
pairs at different separationsis therefore obtained, not by

wherew, and wg are the angular Larmor frequencies of the summingr ~® terms, but by integrating  ®xr?xr?=r"2,

two spins. In the homonuclear casg§= ws=2mvy. Unless

As a result, the intermolecular NOE, which involves

otherwise noted, the model parameters have been assigng@)(0), becomes long-ranged.

the values given in Table I, which are representative for a

solvent-exposedH spin in a small protein in water at room
temperature, investigated bii—*H NOE measurements at a
H resonance frequency of 600 MHz.

The effect of long-range dipole couplings on the SDF
can be examined quantitatively by the mathematical device
of imposing an absorbing boundary at a variable distance
from the center of thé sphere. In this way, we can isolate

For reference, we recall that the SDF for an isolated spinhe contribution to the SDF fron$ spins located within a

pair | -S with internuclear vector of fixed lengthr and
tumbling isotropically with rank-2 rotational correlation time
R iSl

1 TR

IO = 8 T tar?

(3.3

spherical shell extending a distanée=c—b out from the
solvent-accessible surface of the macromole¢siée Fig. L

The solid curve in Fig. 2 is the SDF with contributions from
all solvent spins included, while the dashed curves are ob-
tained if we only include solvent spins within a shell of the
indicated thickness. At high frequencies, where the SDF

This case is commonly referred to as intramolecular dipolaonly samples fast motions, slowly modulated long-range di-

relaxation. For a strongH—-'H dipole coupling, withr

pole couplings do not contribute much. However, even at 1.2
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FIG. 2. Spectral density functiodf®(») for unrestricted uniform diffusion g, 4. Spectral density®)(v;d) at v=0 and v=2x600 MHz vs the

with parameter values from Table(olid curvg and with an absorbing  gistance of closest approach=b—p between thel spin and anS spin.
boundary 3, 10, or 30 A outside the accessible surface of the macromolecu|§nrestricted uniform diffusion with parameter values from Table I.
(dashed curves

4
GHz [the frequency sampled b#?)(2w,) in a 600 MHz NwVw=—5-[(b+ 5)3-b%], (3.9
NOE experimert solvent spins 10 A from the surface con-
tribute significantly. More importantly, the zero-frequency whereV,,=30 A2 is the volume occupied by one water mol-
spectral densityd®(0) has substantial contributions from ecule. It is seen thal®(0) has reached only half of the
solvent spins well beyond 30 A. This is in contrast to theconverged value when 2000 water molecules are included
generally held view*?that only water molecules in the first and that 200 000 water molecules are required for 90% con-
hydration layer §~3A) contribute significantly to the vergence. The asymptotic convergenceJ&(0) is slow:
NOE. Ny"3. Because of the eccentric location of thepin, all S
The convergence of the SDF as more distant solvenspins at a given distance from the surface will not make the
spins are included is shown in Fig. 3 at zero frequency and atame contribution to the SDF. However, because the macro-
1.2 GHz. In the inset, the same SDFs are plotted against th@olecular radius is only 15 A, the asymptotiarge Ny)
numberN,, of contributing water molecules, obtained frai behavior 0fJ®(0) would hardly be affected if the spherical
with the aid of the geometric relation absorbing boundary were centered on Ithepin.
Figure 4 illustrates the dependence of the SDF on the
distance of closest approacti=b—p, between thd spin

L L R and anS spin (see Fig. 1 For water at the surface of a
I biomoleculed is rarely less than 3 A. The maximum value is
| /v=12GHz 4 d=b=15A, corresponding to a centeréapin. In the in-
08k | tramolecular case, E3.3), this range of internuclear sepa-
? ' UL SRR e L e el m R rations Corresponds to a factor (156/%)15 625 variation of
gj i I 17 the SDF. In the intermolecular case shown in Fig. 4, how-
< 06F L 4 A ever, the SDF only varies by factor 24t zero frequengyor
% -l Juco i 1 - 11 (at 1.2 GHz. This ?s another manifestation of the long-
2 o4l 050 4 range nature of the intermolecular SDF, where the fBw
g ’ B . spins withr ~d contribute less than the numerous more dis-
N K 17 tant S spins.
0.2 - 4 In Fig. 5, we examine the dependence of the SDF on the
O o oo e os rank-2 rotational correlation timez=6(Dg) ~* of the mac-
ol v romolecule. The default valuer=7 ns, used in all other

0 20 40 60 0 100 figures, is seen to be close to the static limit. Unless the
macromolecule is much smalléike an oligopeptidgor sol-
vent diffusion is much sloweras for water molecules
FIG. 3. Relative spectral densit}f?(v; )/ @ (v;) at v=0 and p=2 trapped in deep surface pocketthe intermolecular SDF is
X600 MHz vs the position of an absorbing boundary, at a distarmeiside  hardly affected by the rotation of the macromolecule. Also
the accessible surface of the macromolecule. Unrestricted uniform _d|ffu5|oLEhe translational motion of the macromolecule is unimpor-
with parameter values from Table I. The inset shows the same relative spec- . . . ; . .
tral densities vs the number of water molecules inside the diffusion spactNt. The relative translational diffusion coefficiddy is the

boundary ac=b+ 6. sum of the macromolecular and solvent diffusion coeffi-

Diffusion space boundary, & (&)
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FIG. 5. Spectral density®(v; ) at v=0 and y=2x 600 MHz vs the F.IG. 6. Spectral density functioff?(v) for unrestricted nonunlform .dn‘f_u
sion. Parameter values from Table | and the translational mobility in the

rank-2 rotational correlation timeg. Unrestricted uniform diffusion with .
R %olvatlon layer retarded by a factor 1, 2, 5 or 10.

parameter values from Table |. The arrows correspond to the case of
centered spin (left) and to the staticz=0) limit (right).

the cross-relaxation rates are dominated by long-range dipole
cients, but fob=15 A the former contributes less than 10%. couplings to more distant solvent spins, as demonstrated by
In the limit of very fast macromolecular rotatigshortrz),  the dashed curve in Fig. 7.
the | spin eccentricity is averaged out and the SDF ap- Figure 8 shows that the remarkable insensitivity of the
proaches the value calculated with a centdrsplin (see Fig.  ratio o /og to the mobility of water molecules in the first
5). For this reason, our neglect & spin eccentricity has hydration layer persists for all relevant values of the distance
virtually no effect on the SDF at the frequencies of interestof closest approachd. (In Fig. 7, we usedd=3A.) Only
(see Appendix when the translational retardation facﬂbfro)/ D(Tl) exceeds
10 doeso| /or decrease significantly. Whereas /o is
insensitive to solvation dynamics, Fig. 8 shows that it de-
pends more strongly on solvent accessibility, modeled here

Close to the macromolecular surface, solvent diffusion iy the distance of closest approach. In fagt,/og is an
expected to be slower than in the bdlkThis dynamic per- order of magnitude more sensitive tbvariations in the
turbation is short-ranged, essentially confined to the firstange 2.5-7.5 A than t®{”/D{" variations in the range
layer of solvent molecules. We model this effect by assigning
a diffusion coefficienD{", lower than the bulk valu®{®,
to Sspins located in a surface layer of thickngss3 A. As S
seen from Fig. 6, such dynamic solvation effects are not
strongly manifested in the SDF. Even a tenfold retardation
only doublesJ®®)(0). For thevast majority of water mol-
ecules at a macromolecular surface, we expect that
D{Y/D{M~2 (Refs. 17, 18and the effect on the SDF is then
merely 20%.

In intermolecular NOE studies of biomolecular hydra-
tion, information about hydration dynamics is usually de-
duced from the rati@r_ /o of the two cross-relaxation rates.
Figure 7 shows that the dynamic solvation effect on this ratio -
is even smaller than on the SDF. Ironically, /o is par- -
ticularly insensitive to solvation dynamics at the Larmor fre-
guencies used in most intermolecular NOE studies. At 600 Covowl il vl el v e
MHz, a tenfold retardation of solvent dynamics at the mac- 105 107 109 1011
romolecular surface only reduces, /og from 0.438 to
0.395, a variation that is smaller than the typical experimen-
tal error. At 500 MHz, the corresponding variation is evenFIG. 7. Ratio of the homonuclear laboratory-framg | and rotating-frame
smaller: from 0.482 to 0.474. Note that these variations aréor) cross-relaxation rates vs the Larmor frequency. Unrestricted nonuni-
in the opposite directon ffom what one might expect by ser wih praneter Yaes tom Teie ang e rnisne,
analogy with intramolecular NOEs. The reason for the insenz;ne corresponds to uniform diffusion with an absorbing boundary 3 A
sitivity of o /og to dynamics in the solvation layer is that outside the accessible surface of the macromolecule.

B. Nonuniform diffusion

0.5
DDy =1

o/ ox
T

Larmor frequency, v, (Hz)
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FIG. 8. Ratio of the homonuclear laboratory-framg  and rotating-frame ~ FIG. 9. Ratio of the homonuclear laboratory-framg [ and rotating-frame
(oR) cross-relaxation rates vs the translational retardation fax{dfD{V . (o) cross-relaxation rates vs the translational diffusion coefficqt
Unrestricted nonuniform diffusion with parameter values from Table | andRestricted uniform diffusion within a layer of thickness=3 A (reflecting
the indicated distance of closest approach outer boundary distance of closest approach=3, 4 or 6 A, and other

parameter values from Table |. The dashed curve for éaddlue refers to
the surface diffusion limit. The dashed—dotted curve correspondd to

1-10. Thed dependence in Fig. 8 contrasts with the intramo-~_* A and layer thickness=10 A.

lecular case, where the strodg® dependence af, andog
cancels out in the ratio. The dependencerpfand o (and
their ratio on the distance of closest approach has been inchange with the pool of mobil§ spins at a sufficient rate to
vestigated previously by calculations based on the uniforngontribute to the observeSiresonance, they may experience
diffusion model(with centered spinsand a model with a a substantial exchange barrier. The translational motion of
planar surfaceland truncation of the aqueous region at 7such species is better described by a discrete exchange model
R).1e than by a force-free diffusion equation. In the case where the
If the molecular species carrying tispins are strongly mobile S spins are water protons, the specifically bousid
attracted by the macromolecular surface, virtuallySdpins  spins may be of three kind$1) labile macromolecular pro-
will be found in a surface layer of thicknegsThere are then tons, such as carboxyl, hydroxyl, ammonium or guandinium
no long-range dipole couplings that can obscure the effect gbrotons in amino acid side-chain&) protons belonging to
solvation dynamics. This situation can be modeled by annternal water molecules trapped in cavities within the mac-
outer reflecting boundary a distanéeoutside the solvent- romolecule; and?3) protons in water molecules located in
accessible macromolecular surface. As expected, Fig. 9 reyockets on the macromolecular surface. The two first classes
veals a pronounced dynamic solvation effect @p/og,  of protons generally have residence times much longer than
along with a considerable accessibility effedtlependence  the rotational correlation timeg of the macromolecule and
The difference between confinemeata 3 Alayer and true  therefore constitute efficient relaxation sifk£%2!The third
surface diffusion §— 0) is seen to be smaltlashed curvgs  class of protons typically have residence times of order
Even a 10 A layer does not deviate much from the surfacg10 g 17:20.21
diffusion limit. The ratioo /o is sensitive to solvation dy- In the presence of freely diffusing as well as specifically
namics only when surface diffusion is fast enough to comboundS spins, the SDF can be calculated as the real part of
pete with rotational diffusion, i.e., when?=b?%/(6D)
<7gR. For the parameter values used in Fig. 9, this means P T TC,k
D+>5x10 ' m?s 1. The surface diffusion limit should be J! )(w)_jgn‘)’b"e(w)ﬂ;l S l+iorcy’ 39
applicable to counterions and certain cosolvents that accu- ) _ ) _
mulate strongly at the macromolecular surface without long-The first term, due to mobil& spins, is calculated as de-

lived association at specific binding sites. scribed in Sec. Il. The second term is a sum overNgj|

specifically bounds spins withl —S internuclear vectors, .

These are treated as intramolecular dipole couplings, just as

in Eq. (3.3), but with the difference that translational motion
Up to now, we have considered dipole couplings be-(exchange with mobileéS sping is incorporated via the cor-

tween a macromoleculdrspin and a large numbéis of S relation time 7, determined by the rotational correlation

spins in solvent molecules undergoing force-free translatime 7z and the mean residence timg through®

tional diffusion. In addition to these mobile solvent species, a

smaller numbeN,, of Sspins may reside at specific macro- i - i + i (3.6)

molecular sites. Even if these specifically bouBidpins ex- Tck TR TMk

NMl

C. Long-lived association
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FIG. 10. Spectral density functial?(v) for unrestricted nonuniform dif-
fusion in the presence of two long-lived (> r5) Sspins at a distancey
from thel spin. Parameter values from Table I. The dashed curve is obtaine
in the absence of long-live8 spins.

FIG. 11. Homonuclear laboratory-framer() and rotating-frame «g)
gross-relaxation rates vs the Larmor frequency. Unrestricted nonuniform dif-
usion in the presence of two long-livelispins at a distancg,=6 A from

thel spin. Parameter values from Table |. The dashed curves are obtained in
the absence of long-live8 spins.

This simple treatment of specifically bouispins is valid

provided that we can neglect the effects of dynamic cross]?L 1‘7? vaftluesl n trl!e g‘gg 0'2._.0'5l' go(\j/vev/er, vghen the ef-
correlations among differemt, vectors as well as any inter- ect ol a few long-liveds spins IS Includede /o DECOMES

nal motions of these vectofS.Furthermore, we have as- negative and may even approach the slow-motion limit of

sumed thafNy <Njs. —1/2.

Figure 10 shows the effect on the SDF of two long-lived ' N€ ratioo /og is often used as a residence time indi-
(ry>7x) Sspins at a distance, of 6, 8 or 10 A from the cator for water molecules interacting with biomolectie¥

spin, in addition to a largéeffectively infinite number of For a L_oren_tzian ?I?/E the zero-cr_ossingaq_f oceurs at a
freely mobileS spins with a five-fold dynamic retardation in correlation timerc= v5/(4mwo), which equals 0.30 ns at a

the hydration layer §=3 A). These two long-lived spins Larmorr] frequhency of 680 ,:;AHZ_'f,lzR i,shmrl:Ch Iogger, Eg.
might represent a water molecule buried in an internal cavity3-6) SOWs thatrc may be identified with the residence time

or two macromolecular hydroxyl protons. In addition to the '™ - This intramolecular case corresponds to the dashed-—

broad dispersion centered near 1 GHz, due to translationz%onﬁd curvilr;\lFlg.fl:?. Nbote tzgt th'S curve dﬁe§ S_Ot depend
diffusion of mobile S spins, there is now also a Lorentzian on the numbeNy of site-boundS spins or on their distance

dispersion centered at 20 MHz, reflecting macromolecular
tumbling. The low-field dispersion does not affect the spec- S5S——m——r————+——+——+———————
tral densitiesJ®(w,) and J®(2w,), which typically are \
dominated by motional frequencies in the GHz range. How- N
ever, the zero-frequency spectral densit§’(0) is strongly N .
affected by even a small number of relatively remote, but N

long-lived, S spins. \

In intermolecular NOE studies of protein hydration, it is
customary to neglect the effect of labile protons further than
4 A from the observed spin®'° Figure 11 shows that this
convention is inappropriate. Even two long-lived protons 6 A
from thel spin has a substantial effect on the cross-relaxation
rates, changing the rati@, /o from about 0.5 to Qat 600
MHz). The value of the cutoff radius is critical: By changing
it from 4 to 8 A, say, we increase the excluded volume by a i

o /ox
o
T
/
1

~
~

Ny =6,ry=7A I

Ny=2,ry=5A

factor 8. For the protein BPTI, which has served as testing o5 v 0y Ty
ground for intermolecular NOE studié<® 97% of all mac- 3 5 10 15
romolecular protons are withi8 A of one ormore protons in Distance of closest I-S approach, d (A)

side-chain hydroxyl, ammonium or guanidinium groups or in
one of the four buried water molecules. Figure 12 shows th&!G. 12. Ratio of the homonuclear laboratory-frame X and rotating-

- - frame (og) cross-relaxation rates vs the distance of closest apprdach
Combme,d eﬁe(,:t of the distance of closest gpproanbffor Unrestricted nonuniform diffusion in the presence of two long-liGspins
the mobileS spins, and of the number and distance of Iong-4¢r,, —5 & or 6 long-livedSspins atr,, =7 A. Parameter values from Table

lived S spins. Ford=3-5A, the mobileS spins yield 1. The dashed curve is obtained in the absence of long-i&/sgins.
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170) resonance degenerate. Nevertheless, different classes of
L e ] water molecules can be identified and characterized. In the
- N . MRD method, a dynamic selection is accomplished by ex-
\ ploiting the fact that water molecules with different rota-
tional correlation times give rise to characteristic frequency
dependencieqddispersions in the longitudinal relaxation
rate?®?! In the NOE method, the selection is more compli-
cated, being dependent on both the mobility and proximity of
water molecules to protein protons with resolvi reso-
nances. While the MRD and NOE methods are well-
established and complementary tools for identifying and
characterizing internal water molecules buried inside pro-
teins, their application to the study of surface hydration pre-

0.5

o /oy

0.5 ) .
A T R ST sents experimental challenges as well as theoretical prob-
10-12 10-10 10-8 lems. The present theoretical analysis of intermolecular
Residence time, 7,; () dipolar cross-relaxation between macromolecular and sol-

vent spins has important implications for NOE studies of
FIG. 13. Ratio of the homonuclear laboratory-frame X and rotating-  biomolecular hydration. Rather than attempting a detailed
frame (o) cross-relaxation rates vs tht_e residencg tigeof two_Sspins_at reassessment of published NOE déttaappear elsewhe)r,e
a_dlstgnceM:3, 4 or 5 A from thel spin. Unrestnlctied nonuniform d|ﬁu- we conclude with some general observations.
sion with parameter values from Table I, i”/D{=2. The dashed line . ; . .
is obtained in the absence of long-livBapins and the dashed—dotted curve The crucial point made here is that intermolecular NOEs
with only the long-liveds spins. to solvent spins are of long range. NOEs involving the

solvent-exposed protons at the macromolecular surface

therefore tend to be dominated by long-range dipole cou-
rv from thel spin. In the absence of such site-bo®sbins,  plings to a very large number of water molecules in the bulk
the mobile S spins yieldo, /og=0.47 (the dashed line in solvent region. As a consequence, NOEs can provide little or
Fig. 13 for D{Y/D{"=2, which is a plausible value when no information about the vast majority of water molecules
water molecules in deep surface pockets are exclt@i¥d, interacting with the macromolecular surface. In the past,
i.e., the water molecules with residence timg that are NOE data on surface hydration have been interpreted in
treated explicitly in Fig. 13. terms of variants of the intramolecular model or in terms of

The three solid curves in Fig. 13 show haw/og de-  the uniform diffusion model. These models are inappropri-
pends on the residence timg, and distance,, of a single  ate; the former because they ignore the dominant long-range
relatively long-lived water molecule in the presence of thecontribution and the latter because it assigns the same diffu-
mobile S spins. These curves must fall between the two lim-sion coefficient to all water molecules in the system.
iting cases, represented by the dashed horizontal line and the In the usual analysis of intermolecular NOEs with the
dashed—dotted Lorentzian curve. With increasing residencaid of the uniform diffusion modet;*? the ratio o /og is
time 7y, o, /or goes from the former to the latter limit. As converted to a water diffusion coefficient by means of a sig-
a consequence;_/ o increases withr,, below about 0.1 ns. moidal curve like that in Fig. 14. For example, with the
This behavior contradicts the widespread notion that sloweparameter values used in Fig. 1, /og=0.2 corresponds,
hydration dynamics corresponds to smatigr/or, which is  according to the uniform diffusion model, to a diffusion co-
not generally true. Figure 13 shows that a single water molefficient D+=0.83<10"? m?s™*. However, this value per-
ecule affectsr| /o significantly only if its residence time is tains to all water molecules and therefore cannot serve as a
longer than about 0.2 ns. Furthermore, the zero-crossing déreasure of hydration dynamics. For the saméog value,
pends strongly on the distance of this water molecule fronthe nonuniform model yieldsD{"=0.10x107° m?s ™%,
thel spin, increasing by an order of magnitude whgngoes  This corresponds to a retardation factor of 20, an order of
from 3 to 5 A. Finally, we note that the results in Fig. 13 aremagnitude more than expected for exposed surface’éités.
valid only in the absence of contributions from long-lived For exposed surface protons of the small protein BPTI,
(7> 7r) Sspins. As noted above, this is an unlikely situa- o /og values in the range 0.1-1.0 have been repdrtéd.
tion. contrast, with retardation factors derived from MRD data,
the nonuniform diffusion model predicts that /o should
lie in the range 0.4-0.5 for exposed surface protons. In par-
ticular, o /og values close to 1, as reported for many sur-
During the past 15 years, biomolecular hydration hagace protons in BPT? cannot be rationalized by the diffu-

been thoroughly investigated by two different NMR tech-sion model because dipole couplings to remote bulk water
nigues: magnetic relaxation dispersidviRD) of the quadru- molecules are modulated slowly, not because the water mol-
polar 2H and O nuclides in the water molecidf?* and  ecules diffuse slowly, but because they have to move a large
intermoleculartH—H NOEs"? Neither method can sepa- distance to randomize the orientation of the internuclear vec-
rate hydration water from bulk water in the NMR spectrumtor. As discussed elsewhere, such large/og values are
because fast water exchange makes the watdr fH or  likely to be experimental artifacts. On the other hand, most

IV. DISCUSSION
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| sponds roughly to a larger macromolec(riadiusb+ &) sur-
rounded by bulk water(The correspondence is not exact
because the hydration layer also acts as a “correlation sink”
for nearby bulk water moleculgs.

Results on surface hydration dynamics obtained by the
NOE and MRD methods have not previously been compared
directly because of the incompatible models used to interpret
NOE and MRD data. However, the nonuniform diffusion
model allows contact to be made between the two methods.
MRD data yield the quantitiNp,«( 5/ 78— 1), whererg’
is the rotational correlation time of thé,, 4 water molecules
in the hydration layer and(RO) is the (known) rotational cor-
relation time of bulk watet®?! Because both translational
and rotational motions of water molecules are rate-limited by
the underlying hydrogen bond dynamics, the rotational retar-
dation factorr{)/ 7 can be identified with the translational
retardation factoD{”/D{"). Furthermore, the numbe,q
FIG. 14. Ratio of the homonuclear laboratory-frame,) and rotating- ~ Of retarded water molecules can be related to the hydration
frame (o) cross-relaxation rates vs the translational diffusion coefficientlayer thicknesss by means of Eq(3.4). When MRD results
D{”) (uniform diffusion or D (nonuniform diffusion. Unrestricted uni-  are used to predict NOE results in this way, one finds that the
form or _nonu_nif(_)rm diffusion with parameter values from Table I. The modest slowing down of water motions in the hydration
dashed lines indicate the zero-crossingrof/ oy . Iayer has a negligible effect on thﬂ_/o'R ratio.

In the past, NOE results have invariably been discussed
in terms of model-dependent water residence times rather
of the smallo_ / o values appear to result from intramolecu- than the more robust retardation factors. To be consistent
lar NOEs to rapidly exchanging labile protein protons. Suchwith the nonuniform diffusion model, the water residence
artifacts are usually deemed insignificant if the observed protime should be defined as the mean time taken for a water
tein proton is more than 4-5 A from any rapidly exchangingmolecule to reach the outer boundary of the hydration layer
labile proton'®*?However, as shown in the foregoing, more (at r =b+ &) with its initial position uniformly distributed
remote labile protons can make substantial contributions taithin the hydration layer §<<r<b+ ). This so-called
the weak NOEs observed with surface protons. mean-first-passage-time can be obtained by direct integration

The nonmonotonic variation aof, /o as a function of  of the diffusion equation, subject to reflection and absorption
water mobility or residence time, predicted by the nonuni-boundary conditions at=b andr=b+ ¢, respectively. The
form diffusion model, demonstrates that this ratio cannot beesult i€
used as an indicator of hydration dynamics. As illustrated by 2

. . . é 1)
Fig. 14, an increase ofr /og can result from either de- 1__+(9(_2”. 4.2
creased or increased hydration water mobility. Accordingly, b b

o log is not a single-valued function d{") and this am-  \yith a retardation factor of 2Refs. 17, 18 and 6=3 A
biguity appears in the experimentally most relevant regiongy, ihis yields .= 30 ps at 25°C.

(retardation factor 1-4 The maximum inaL/qR results The water—proteifH—1H NOE method has a precedent
from two oppc()ls)ed e(gf)ects of increased hydration water Moy, he closely analogous experiment where a nitroxide spin
bility. When D7 '<D7" (large retardation water molecules |4 is covalently attached to the protein to probe the mo-
in the hydration layer make large (%)ptrlbutlons to both  pjlity of hydration water via the longitudinaiH relaxation
andog and the ratio increases wiy” in the same sigmoi-  rate R! induced by the intermolecular dipole—dipole cou-

dal way as for the uniform model. For sufficiently large re- pjing between the water proton and the unpaired electron
tardation,o /o attains the same limit-1/2, as in the uni-  gin 2425 | this casé,

form case. AD{" increases, the relative contribution from

hydration water tar, andog decreases and the contribution ~ R1=K;[0.1J? (0~ ws) +0.31(w))
from bulk water becomes increasingly important. Even while 2

D{ remains smaller thab{”) (between the maximum and £0.60% (it wg)], (4.2
crossover in Fig. 14 o /og passes through a maximum and wherew, and wg are the angular Larmor frequencies of the
then decreases as the relative contribution from the morproton and electron, respectively. To estimate the spatial ex-
mobile bulk water molecules increases further. This happentent of the aqueous region probed by this experiméht/,vas
because the characteristic time scale for modulation of thealculated as described in Sec. I(iniform mode) but with
orientation of the internuclear vector is longer for the morethe upper integration limits in Eq2.17) replaced byc.?* By
remote (albeit more mobilg bulk water molecules. In the this simpe device one restricts the initial and final positions
(physically implausiblglimit D{Y>D{”, the hydration wa- of the S spin to the regiorb<r<c but, since the infinite-

ter contribution is negligible and, /o levels out at a value space propagator is retained, one does not exclude diffusive
(0.044 for the parameter values used in Fig) that corre-  trajectories that sample the regior c at intermediate times.

o /og

05 S T A TE T B T BTSN
10-11 109 107
Diffusion coefficient, Dp{® or D) (m? s-1)

52
Tres— Wgrl)

Downloaded 06 Dec 2003 to 130.235.129.13. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



12384  J. Chem. Phys., Vol. 119, No. 23, 15 December 2003

Such trajectories are excluded by imposing an absorbing G)(7)=(47) texg —L(L+1)Dgr].

boundary atr =c, as in our calculation§Sec. Il B. In either

case, one finds that the spin-label experiment has a much Combination of Eqs(A3) and(A4) yields

shorter range than the intermolecular NOE experiment, with

R'1 converging to 90% av=c—b=10A and to 80% at 5

A.2% This difference is mainly due to the large magnetic mo-

ment of the electron, which of course does not affectrth®

Bertil Halle
(A5)
P L
g?(n=2 X Afup™GR'(7)
£=o0 M=-L
X(Ft . om(Ro)FL2m(R)). (A6)

dependence of the individual dipole—dipole couplings, but

makesws= 658w, . As a result,R'1 probes water motions at

The last factor is a purely translational TCF and, on account

much higher frequency than the homonuclear crossof the cylindrical symmetry abow, it cannot depend on the
relaxation rates, which involve the zero-frequency SDFNdexM.We can therefore sét =0. The sum oveM in Eq.

J?)(0).
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APPENDIX: TRANSLATION-ROTATION DECOUPLING
IN THE INTERMOLECULAR TCF

The essential step in our derivation of EQ.5) is a
one-center expansion of the solid harmortig o(R—p)
about the center of thesphere(see Fig. 1 This expansion,

based on a rotational transformation of the spherical ha

monic Y, () and a Laplace-type expansion 10f3, takes
the fornt®

o L
Fz,o(R_P):LZO M;L ALmp YL —m(QPF L om(R).
(A1)

(A6) then only involves the 3 ) symbol in Eq.(A2). Using
the orthogonality relatiof

L

L 2 L+2
> |
M=—L M O M

2_1

- (A7)

we thus obtain

g'%(7)= %77 2, (L+1)(L+2)(2L+3)p™GR(7)
L=

X(FL+2,dRo)FL+2dR)). (A8)
Multiplying by 47Ng and using the definitiori2.4), we ar-

five at the desired Eq2.5). A different derivation of this

result has been presented by Ayanal?®
If rotation is much faster than translation, then the total
TCF in Eq.(A3) can be decomposed as

9?(71)=gr(7) +(F20Ro)F20R)), (A9)

where the last term is the purely translational TCF obtained
with a centered spin. In the SDF, the rotational TGig(7)

Here, (1* denotes the spherical polar angles that specify the,hyiptes significantly only at frequencies above the trans-

orientation of the vectop in the laboratory-fixed frame. Fur-
thermore,

1/2
ALM=(—1)L(T> [(L+1)(L+2)(2L+3)]*2

L 2 L+2
-M 0 M

The purpose of the expansidAl) is to factorize the
dependence on the vectdRsand p. If the translational mo-
tion modulatingR and the rotational motion modulating
are statistically independent, the total T@)(7) can be
expressed as a sum of products of partial TCFs,

9(2)(T)E<F2,0(RO_PO)F2,0(R_P)>
0 ) L L’
= 2 2 2 E Aim Alrwe
L=0 L'=0 M=—L M'=-L’

X(poYt —m(Q8)p" Yir i (QP)

X<FE+Z,M(RO)FL’+2,M’(R)>'

If the vector p is of fixed length and undergoes isotropic
rotational diffusion, then

X (A2)

(A3)

<p|6Y,LC,7M(Qg)PL,YL’,7M’(Qp)>: oL 5MM’PZLG§?L)(T% )
A4

with the purely rotational TCF,

lational dispersion. The second term in E49) is obtained

by noting that, on time scales where the first term has
practically decayed to zero, the rotational TCFs in ER)

can be replaced by the corresponding product of isotropic
equilibrium averages. For @vector of fixed length, we then
have

(YE_m(Q)YL —n (QP))
:<Y*,7M(Qg)><YL',7M’(Qp)>

1
= 6L00L'00M0Om 07 - (A10)
By inserting this into Eg.(A3) and noting thatAg
=(47)Y2, we obtain the second term in EGA9).

With the aid of a two-center expansion of the solid
harmonics?® it is straightforward to generalize EGA9) to
the case where both splnand S are located off-centérin
the same way as we have done for tigpin, it can be shown
that the off-center location of th&spin only affects the total
TCF on the short time scale of solvent rotation.
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