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ABSTRACT In thepresenceof high concentrationsof inertmacromolecules, the self-associationof proteins is strongly enhanced
through an entropic, excluded-volume effect variously called macromolecular crowding or depletion attraction. Despite the
predicted large magnitude of this universal effect and its far-reaching biological implications, few experimental studies of
macromolecular crowding have been reported. Here, we introduce apowerful new technique, fast field-cyclingmagnetic relaxation
dispersion, for investigating crowding effects on protein self-association equilibria. By recording the solvent proton spin relaxation
rate over a wide range of magnetic field strengths, we determine the populations of coexisting monomers and decamers of bovine
pancreatic trypsin inhibitor in the presence of dextran up to amacromolecular volume fraction of 27%. Already at a dextran volume
fraction of 14%, we find a 30-fold increase of the decamer population and 5105-fold increase of the association constant. The
analysis of these results, in terms of a statistical-mechanical model that incorporates polymer flexibility as well as the excluded
volume of the protein, shows that the dramatic enhancement of bovine pancreatic trypsin inhibitor self-association can be
quantitatively rationalized in terms of hard repulsive interactions.

INTRODUCTION

The importance of excluded-volume interactions for the

solution behavior of proteins was first recognized in studies of

the effect of polymers on protein partitioning (Ogston and

Phelps, 1960) and solubility (Laurent, 1963; Atha and Ingham,

1981), which laid the foundations for the current widespread

use of nonadsorbing polymers, like polyethylene glycol, for

protein separation (Albertsson, 1986) and crystallization

(McPherson, 1985).More recently, the realization thatmacro-

molecules occupy 20–30% of the intracellular volume has

provided a biological motivation for studying the effects of

nominally inert background macromolecules on protein as-

sociation equilibria and rate processes (Minton, 1981, 1998,

2000; Ellis, 2001). Now loosely referred to as ‘‘macromo-

lecular crowding’’, such entropic, excluded-volume effects

are thought to play important roles in protein folding (van den

Berg et al., 1999; Qu and Bolen, 2002; Sasahara et al., 2003),

protein self-association into functional native oligomers

(Lindner and Ralston, 1995; Rivas et al., 1999, 2001; Zorrilla

et al., 2004a) or amyloid aggregates (Hatters et al., 2002),

intracellular compartmentation (Walter and Brooks, 1995;

Hancock, 2004), and cell volume regulation (Garner and

Burg, 1994; Al-Habori, 2001).

Addition of inert macromolecules to a protein solution

shifts equilibria toward the more compact state because this

minimizes the volume excluded to the inert macromolecules.

Under typical physiological conditions, macromolecular

crowding is therefore a powerful driving force for protein

self-association, which may increase the association constant

by several orders of magnitude as compared to dilute in vitro

conditions. Whereas theoretical predictions of macromolec-

ular crowding effects abound, there are remarkably few

experimental studies of this universal phenomenon. The

principal experimental challenge is to resolve and quantify

populations of protein oligomers in dynamic equilibrium.

This task is further complicated by the background of abun-

dant macromolecular crowding agent. One of the few tech-

niques that has been applied to this problem is analytical

ultracentrifugation, where tracer sedimentation equilibrium

data yield an apparent buoyant molar mass, which, after

certain approximations, provides the weight-average molar

mass of the self-associating protein (Rivas et al., 1999).Because

this technique does not resolve the different oligomers, the

interpretation becomes somewhat model dependent.

In this work, we demonstrate that the macromolecular

crowding effect can be studied in a direct way by an NMR

technique known as magnetic relaxation dispersion (MRD).

The MRD technique has recently been used to characterize

quantitatively the self-association of bovine pancreatic

trypsin inhibitor (BPTI) (Gottschalk et al., 2003a), bovine

b-lactoglobulin (Gottschalk et al., 2003b), and hen lysozyme

(Gottschalk and Halle, 2003), in all cases without crowding

agent. By recording the solvent proton spin relaxation rate

over a wide range of magnetic field strengths, it is possible to

resolve (in the frequency domain) protein oligomers with

different rotational diffusion coefficients and to determine the

populations of coexisting oligomers. Here, we use the MRD

technique to study the BPTI monomer-decamer equilibrium

(Hamiaux et al., 2000; Gottschalk et al., 2003a) in the

Submitted November 8, 2004, and accepted for publication December 28,

2004.

Address reprint requests to Dr. Karim Snoussi, E-mail: karim.snoussi@

port.ac.uk; or Dr. Bertil Halle, E-mail: bertil.halle@bpc.lu.se.

Karim Snoussi’s present address is Biophysics Laboratories, School of

Biological Sciences, St. Michael’s Bldg., University of Portsmouth, White

Swan Rd., Portsmouth PO1 2DT, UK.

� 2005 by the Biophysical Society

0006-3495/05/04/2855/12 $2.00 doi: 10.1529/biophysj.104.055871

Biophysical Journal Volume 88 April 2005 2855–2866 2855



presence of dextran as a crowding agent. We find that BPTI

self-association is strongly enhanced by the polymer, with

a 30-fold increase of the decamer population and 5105-fold

increase of the association constant at a dextran volume

fraction of merely 14%.

Dextran is commonly used as a crowding agent because it is

uncharged and does not adsorb to protein surfaces (Laurent,

1963; Lindner and Ralston, 1995; Rivas et al., 1999; van den

Berg et al., 1999; Qu and Bolen, 2002; Hatters et al., 2002;

Sasahara et al., 2003). On the other hand, the conformational

flexibility of the dextran polymer chain complicates the

statistical-mechanical analysis of the crowding effect. In

contrast to previous work, we take the flexibility into account

explicitly in the theoretical analysis (Lue, 1998). We find that

the MRD data can be quantitatively accounted for by a hard-

repulsion (excluded-volume) interaction and a Kuhn length

for dextran consistent with light-scattering results. Our theo-

retical analysis also incorporates, in a self-consistent manner,

the crowding effect of the protein itself.

MATERIALS AND METHODS

Materials and sample preparation

Bovine pancreatic trypsin inhibitor was supplied by Bayer HealthCare AG

(Trasylol, lot no. 9104, 97% purity by high-performance liquid chromatog-

raphy). After exhaustive dialysis to remove residual salt the protein was

lyophilized. Dextran, manufactured by sucrose fermentation with Leuco-

nostoc mesenteroides bacteria (strain B-512), limited hydrolysis, ethanol

fractionation, and spray drying, was obtained from Sigma (product no.

D9260). According to the manufacturer, the mean molecular mass was
�MM ¼ 10:4 kgmol�1 (determined by size exclusion chromatography), which

corresponds to a mean degree of polymerization of �mm ¼ 64:1: The residual

water content of the dextran preparation was taken to be 5%.

Samples for MRD measurements were prepared by dissolving, at room

temperature, dextran and/or BPTI in millipore water and adjusting pH to 4.5

by microliter additions of 3 M HCl. No buffers were used. The BPTI

concentration was determined spectrophotometrically (GBCUV-VIS 920) at

280 nm (before addition of dextran), using an extinction coefficient of 0.837

mL mg�1 cm�1 (Gottschalk et al., 2003a). Volume fractions were calculated

with partial specific volumes of 0.611 mL g�1 for dextran (Granath, 1958),

0.720 mL g�1 for BPTI (Filfil et al., 2004), and 1.000 mL g�1 for water. The

mixed BPTI/dextran samples were prepared by adding known amounts of

dextran powder to a BPTI solution of known concentration. The relevant

concentration variables for all samples are summarized in Table 1: mass (w)

and volume (f) fractions, molarities (C), and the number of water molecules

per glucose unit Nglu
W

� �
or per BPTI molecule NBPTI

W

� �
: To assess the degree

of polymer chain overlap, we include in Table 1 themean spacing, d, between

dextran molecules. For a uniformly expanded face-centered cubic spatial

distribution, d ¼ ð
ffiffiffi
2

p
VM=fMÞ1=3 with fM the dextran volume fraction and

VM ¼ 10,540 Å3 the anhydrous volume of a dextran molecule.

Relaxation dispersion measurements

The longitudinal relaxation rate of the water 1H resonance was measured

over more than four frequency decades, from 10 kHz to 200 MHz. To cover

this frequency range, we used three types of NMR spectrometer: 1), a Stelar

Spinmaster (Stelar, Mede, Italy) fast field-cycling (FC) spectrometer (from

10 kHz to 10 MHz); 2), a field-variable iron-core magnet (Drusch, Hanstedt,

Germany or GMW, San Carlos, CA) equipped with a Tecmag (Houston,

TX) Discovery or Apollo console (16–78 MHz); and 3), Bruker (Billerica,

MA) Avance DMX 100 and 200 spectrometers with conventional

cryomagnets (100 and 200 MHz). The temperature was maintained at

27.0 6 0.1�C using a Stelar variable temperature control unit (below 100

MHz) or a Bruker Eurotherm regulator (at 100 and 200 MHz). Temperatures

were checked with a thermocouple referenced to an ice-water bath. No

attempt was made to purge oxygen from the solutions, because the small

paramagnetic relaxation contribution form dissolved O2 (Teng et al., 2001)

is expected to cancel out when taking the difference of the relaxation rates

measured with and without dextran.

In the non-FC experiments (with variable detection field), the longitudinal

relaxation rate, R1, was measured with the 180�� t� 90� inversion recovery
sequence, an eight-step phase cycle, and 20 randomly ordered delay times.

The total 1H magnetization recovers biexponentially, because it includes not

only water and rapidly exchanging macromolecular protons but also a minor

contribution from nonexchanging macromolecular protons. The latter

contribution, which can increase the apparent R1, was eliminated by

integrating the water peak over a range where the spectral overlap was

negligible (for non-FC experiments), or by using an acquisition delay

sufficiently long that the protein magnetization had decayed before the signal

was recorded (FC experiments). In this way, single-exponential recovery

curveswere obtained, fromwhichR1 was determined by a three-parameter fit.

The accuracy of R1 is estimated to61% (one standard deviation).

The FC technique overcomes the sensitivity problem of conventional

fixed-field experiments in weak magnetic fields (Noack, 1986; Kimmich and

Anoardo, 2004). The polarization and detection fields (in 1H frequency units)

were set, respectively, to 20 and 9 MHz (D series of samples) or to 10 and

8MHz (P series). A field slew rate of 15MHzms�1 (D series) or 4MHzms�1

(P series) and a switching time of 3 ms (D series) or 10 ms (P series) were

used. Relaxation measurements were performed with two different field

TABLE 1 Concentrations of dextran and BPTI in MRD samples

Sample wM* fM
y fBPTI

y CBPTI (mM) d (Å) Nglu
W NBPTI

W

D1 0.090 0.057 – – 64 91.5 –

D2 0.164 0.107 – – 52 46.0 –

D3 0.226 0.151 – – 46 30.8 –

D4 0.279 0.191 – – 43 23.2 –

D5 0.325 0.227 – – 40 18.7 –

P0 0 0 0.072 15.4 – – 3345

P1 – 0.053 0.068 14.5 – 91.5 3417

P2 – 0.100 0.064 13.7 – 46.0 3490

P3 – 0.142 0.061 13.0 – 30.8 3562

P4 – 0.180 0.058 12.4 – 23.2 3634

P5 – 0.214 0.055 11.8 – 18.7 3707

*Mass fraction dextran.
yVolume fraction dextran (M) or BPTI.
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cycles (Kimmich and Anoardo, 2004): the prepolarized cycle below 10MHz

(D series) or 4 MHz (P series) and the nonpolarized cycle above 4 MHz (P

series). In either case, 20 (D series) or 15 (P series) different relaxation delays

(evolution times) were used. The magnitude of the quadrature-detected

signal after a 90� pulse was recorded with a four-step phase cycle. For the P
series, the signal was averaged over 32 transients. The relaxation curves were

invariably single exponential. The accuracy (mean 6 SD of 1) of R1

determined by the FC technique is estimated to 1% (D series) or 1–2% (P

series).

Analysis of relaxation dispersion data

The measured 1H relaxation rate is due to thermal fluctuations of intramole-

cular and intermolecular magnetic dipole-dipole couplings experienced by

water protons and labile macromolecular protons in fast or intermediate

exchange (residence time , 10 ms, typically) with the water protons (Venu

et al., 1997; Halle et al., 1999). The relaxation dispersion, i.e., the frequency

dependence of R1, is produced by protons in long-lived (residence time

10�9 � 10�2 s) association with a macromolecule. Such protons belong

either to water molecules trapped within the macromolecule or to solvent-

exposed hydroxyl, carboxyl, ammonium, or other groups in the macromole-

cule that engage in rapid proton exchange with water.

Under fast-exchange conditions, the relaxation rate measured on a dextran

solution can be expressed as a population-weighted average:

RIðdextranÞ ¼ ð1� f
M

S � f
M

I
ÞRbulk

1 1 f
M

S R
M

1;S 1 f
M

I
R

M

1;I 1R
O2

1 ;

(1)

where fMI ¼ 3=ð312Nglu
W Þ is the fraction of the observed protons that reside in

dextran hydroxyl groups (three per glucose unit) and fMS ¼ 2Nglu
S =

ð3 1 2Nglu
W Þ is the fraction of the observed protons that reside in water

molecules in contact with (and thus significantly dynamically perturbed by)

dextran. (The number, Nglu
S ; of such water molecules is ;6 per glucose unit

(Uedaira et al., 1989).) Further,Rbulk
1 is the relaxation rate of oxygen-free bulk

water (0.27 s�1 at 27 C; Hindman et al., 1973), RO2

1 is the paramagnetic

relaxation enhancement from dissolved oxygen (0.1 s�1 for water in

equilibrium with air; Teng et al., 2001), and RM
1;S and RM

1;I are, respectively,

the intrinsic relaxation rates of protons in water molecules hydrating dextran

and in the hydroxyl groups of dextran.

For a solution containing dextran as well as BPTI, the relaxation rate

contains additional contributions from internal water molecules (four per

BPTI molecule; Venu et al., 1997) and labile BPTI protons (at pH 4.5,

mainly the eight hydroxyl groups), with proton fraction f BPTII ; and from

water molecules in the hydration layer of BPTI, with proton fraction f BPTIS :

Thus,

R1ðBPTI1 dextranÞ ¼ ð1� f
M

S � f
M

I
� f

BPTI

S � f
BPTI

I
ÞRbulk

1

1 f MS RM

1;S 1 fM
I
RM

1;I 1 f BPTIS RBPTI

1;S

1 f
BPTI

I
R

BPTI

1;I 1R
O2

1 : (2)

At sufficiently low dextran concentrations, we can assume that the dextran

contribution is unaffected by the protein. Also the small oxygen contribution

should be the same as without protein. These contributions then cancel out in

the difference of the relaxation rates measured on the (BPTI 1 dextran)

sample, henceforth denoted Pn, and on the dextran sample, henceforth

denoted Dn, with the same water/glucose mol ratio (see Table 1). Thus,

DR1 [ R1ðBPTI1 dextranÞ � R1ðdextranÞ
¼ ð1� f

BPTI

S � f
BPTI

I
ÞRbulk

1 1 f
BPTI

S R
BPTI

1;S 1 f
BPTI

I
R

BPTI

1;I : (3)

The frequency dependence of the difference relaxation rate, DR1; is

produced by the last term in Eq. 3. If the residence times of all protons

contributing to this term are long compared to the rotational correlation time,

tR; of the protein, as is the case for BPTI (Denisov et al., 1995, 1996; Venu

et al., 1997; Denisov and Halle, 2002), then the difference dispersion profile,

DR1ðv0Þ; from a solution containing BPTI monomers (A) and decamers (B)

is described by the following relations (Venu et al., 1997; Halle et al., 1999):

DR1ðv0Þ ¼ a1 bA LAðv0Þ1 bB LBðv0Þ (4)

LXðv0Þ ¼ ð1� jXÞLintra

X ðv0Þ1 jXL
inter

X ðv0Þ (5)

L
intra

X ðv0Þ ¼
0:2 tR;X

11 ðv0tR;XÞ2
1

0:8 tR;X

11 ð2v0tR;XÞ2
(6)

L
inter

X ðv0Þ ¼
0:3 tR;X

11 ðv0 tR;XÞ2
1

0:6 tR;X

11 ð2v0tR;XÞ2
: (7)

Here, hX is the mean-square fluctuation amplitude and tR,X is the rank-

two rotational correlation time associated with BPTI oligomer X (X ¼ A for

monomer and X ¼ B for decamer). Furthermore, jX ¼ bX,inter / bX is the

relative contribution from intermolecular dipole-dipole couplings to the

overall fluctuation amplitude, bX ¼ bX,intra 1 bX,inter. The functions Lxðv0Þ
will be referred to as Lorentzians, even though they are, in fact, linear

combinations of two Lorentzian (reduced) spectral density functions

differing by a factor 2 in frequency. Apart from an overall scaling by

a factor 0.9, the functions LintraX ðv0Þ and LinterX ðv0Þ differ very little (Venu

et al., 1997). The value of jX therefore has no significant effect on the

oligomer fractions that we deduce from the data. We set jX ¼ 0.33, as

previously found for the four internal water molecules in BPTI (Venu et al.,

1997). The quantity a in Eq. 4 represents all frequency-independent

contributions to DR1, including the secular (zero-frequency) intermolecular

contribution (Venu et al., 1997).

The experimental difference dispersion data were subjected to nonlinear

Marquardt-Levenberg x2 minimization (Press et al., 1992) with the model

function given by Eqs. 4–7 and with the products bX tR,X constrained to be

nonnegative. At the two highest dextran concentrations (samples P4 and P5),

it was necessary to include a third (larger) oligomeric species, as found

previously at high salt concentrations (Gottschalk et al., 2003a). All five

difference dispersions (samples P1–P5) plus the dispersion from the dextran-

free BPTI solution (sample P0) were fitted jointly with the correlation times

tR,A and tR,B constrained to have the same values for all samples. The

amplitude parameters bX obtained from the fit can be expressed as

(Gottschalk et al., 2003a):

bX ¼ pX bX; (8)

where pX is the fraction of BPTI molecules that belongs to oligomer species

X or, equivalently, the weight fraction of that species. The intrinsic mean-

square fluctuation amplitude bX is proportional to the number of protons

(per BPTI monomer) with residence times long enough (.tR,X) to sample

the rotational diffusion of the oligomer but short enough (,(bX tR,X)
�1) to

act as a relaxation sink for the observed water 1H magnetization (Halle et al.,

1999). A previous MRD study of salt-induced BPTI decamer formation

established that, to a good approximation, bA ¼ bB (Gottschalk et al.,

2003a). This is, indeed, expected because: 1), the four internal water

molecules in the BPTI monomer are conserved in the decamer; 2), the two

small, predominantly nonpolar, cavities formed at the intermolecular

contacts in the decamer appear to be empty; 3), the central channel in the

decamer is too wide to provide the geometric constraints necessary for long-

lived hydration; and 4), most of the hydroxyl and carboxyl protons that

contribute to the dispersion at pH 4.5 are fully exposed in the decamer

(Wlodawer et al., 1987; Lubkowski and Wlodawer, 1999; Hamiaux et al.,

1999, 2000; Gottschalk et al., 2003a). The oligomer fractions, which must

sum to unity, can then be obtained as

pX ¼ bX

+
X

bX

: (9)

Quoted uncertainties in the fitted parameter values correspond to one

standard deviation and were obtained by the Monte Carlo method (Press

et al., 1992) using 1000 synthetic data sets.
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Modeling of the excluded-volume effect

The model used to describe the effect of dextran on the BPTI monomer-

decamer equilibrium is outlined in the following Theory section. Here we

provide further details about calculations, fits, and choice of geometric

parameters.

The decamer fraction, pB, was calculated self-consistently with the aid of

Eqs. 11, 18, and 20–22. For given values of the experimental variables,

fBPTI (or CBPTI) andfM, and of the parameters,K0, RA, RB, RM, LM, and lM,

we use the following iterative scheme:

1. Set lnG ¼ 0 initially (ideal solution).

2. Substitute K0, CBPTI, and G into Eq. 11 and solve for pB.

3. Calculate DbBPTI and DbM from Eqs. 18, 21, and 22, using pB and

geometric parameters.

4. Calculate lnG from Eq. 20.

5. Repeat from step 2 until lnG and pB converge to desired accuracy.

In the analysis of the experimentally determined decamer fraction, pB, at

different dextran volume fractions, fM, we implement this self-consistent

scheme in a nonlinear least-squares fit, with K0 and lM as adjustable

parameters. In the calculation of pB, we take into account the slight variation

of the BPTI volume fraction fBPTI (and concentration CBPTI) resulting from

dilution by added dextran (see Table 1).

The values of the geometric parameters needed to calculate the crowding

effect on pB were assigned as follows. The radii RX (X ¼ A, B, or M) were

obtained by adding a distance d/2 to the bare radius, R0
x; deduced from the

macromolecular volume:

RX ¼ R
0

X 1
d

2
: (10)

The parameter-dmodels solvent-mediated short-range repulsion between

the macromolecules. We use a default value of d ¼ 3.0 Å, corresponding to

onewater layer. This appears to be consistentwith thermodynamic data on the

preferential solvation of proteins in glucose/water mixtures (Shimizu and

Smith, 2004) and with the linearity of the water 17O magnetic relaxation rate

up to very high glucose concentrations (at least 20% by volume) (Uedaira

et al., 1989).

The radius of a sphere with the same volume as the BPTI monomer, with

molar mass 6.50 kg mol�1 and partial specific volume 0.720 mL g�1 (Filfil

et al., 2004), is R0
A ¼ 12:3 Å: The BPTI decamer is compact, with a high

degree of shape complementarity at the monomer interfaces (Lubkowski and

Wlodawer, 1999; Hamiaux et al., 1999, 2000). However, it is pierced by a

10–15 Å wide central channel, with a volume comparable to that of a

BPTI monomer. We therefore set VB ¼ 12 VA, corresponding to R
0
A ¼ 121=3

12:3 ¼ 28:1 Å: The a-(16)-D-linked glucose monomer of dextran is modeled

as a cylinder of length lM ¼ 4.4 Å (Marszalek et al., 1998). The volume,

pR2
MlM; is obtained from the molar mass of the glucose residue, 162.1 g

mol�1, and the partial specific volume of dextran, 0.611 mL g�1 (Granath,

1958), yielding R0
M ¼ 3:5 Å: The contour length of the dextran molecule is

LM ¼ lM �mm ¼ 282 Å; with �mm ¼ 64:1 the average degree of polymerization

(see above). Finally, the Kuhn length lM is regarded as an adjustable

parameter. As expected for the flexible a-(16)-D-glycosidic linkage in

dextran, we find that lM is an order of magnitude shorter than LM, as assumed

in the derivation of Eq. 17.

THEORY

Analytical treatments of solution nonideality resulting from

excluded volume can be based either on the virial expansion

(McMillan and Mayer, 1945; Zimm, 1946; Kihara, 1953) or

on scaled particle theory (Reiss et al., 1959; Boublı́k, 1974),

whereas numerical treatments make use of simulation

techniques or density functional theory (Kinjo and Takada,

2002). Here, we adopt the virial expansion approach, which

(before truncation) is formally exact and which, furthermore,

allows the effect of polymer flexibility to be included in

a simple way.

The stoichiometric association constant for the monomer-

decamer equilibrium, 10 A B, can be expressed as

K ¼ pB

ð1� pBÞ10
1

10C
9

BPTI

¼ K0G; (11)

where CBPTI is the total BPTI concentration (see Table 1) and

K0 is the dimensionless ‘‘ideal’’ association constant. The

excluded-volume effect on the monomer-decamer equilib-

rium is described by the crowding factor G, which is related

to the monomer and decamer activity coefficients through

(Minton, 1998)

lnG ¼ 10 ln gA � ln gB: (12)

According to McMillan-Mayer solution theory, the

activity coefficients may be expressed in terms of a virial

expansion of the form (Hill, 1986)

ln gX ¼ +
Y

B
ð2Þ
XY nY 1 +

Y

+
Z

B
ð3Þ
XYZ nY nY 1 . . . : (13)

In our case, the summation indices run over three species:

BPTI monomer (A) and decamer (B) and dextran (M). We

assume that the number densities nA, nB, and nM are

sufficiently low that we can truncate the expansion after the

first term, involving the second virial coefficient BXY (we

henceforth omit the superscript). Furthermore, we assume

that the interactions among the three species are short ranged

and can be approximated by hard repulsions. The second

virial coefficient, BXY, is then simply the covolume, VXY,

i.e., the volume excluded by molecule X to the center of

molecule Y (or vice versa), averaged over all relative

orientations of the two molecules. We thus obtain from

Eqs. 12 and 13:

lnG ¼ ð1� pBÞDVA 1
pB

10
DVB

h i
nBPTI 1DVM nM; (14)

where

DVX ¼ 10VAX � VBX: (15)

To calculate the covolumes VXY, we model the BPTI

monomer and decamer as spheres of radii RA and RB and the

dextran polymer as a flexible cylinder of radius RM, contour

length LM, and statistical segment length (or Kuhn length)

lM. The sphere-sphere covolumes VAA, VAB, and VBB are

simply

VXY ¼ 4p

3
ðRX 1RYÞ3; (16)

whereas the sphere-polymer covolumes VAM and VBM are

given by (Lue, 1998)
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VXM ¼ 4p

3
ðRX 1RMÞ3 1pðRX 1RMÞ2LM CXM; (17)

where X ¼ A or B and

CXM ¼ 1

ð11zXMÞ

3 11
azXMð21zXMÞ

2a�11ða�1ÞzXM1ð11zXMÞðLM=lMÞ1=2

" #
;

(18)

with a ¼ ½32=ð3pÞ�1=2 and

zXM ¼ 3

2

ðRX 1RMÞ
lM

: (19)

Equation 17 is a rational fraction approximation that

interpolates between the more well-known rod limit (Ogston,

1970) zXM � 1, where CXM ¼ 1, and the random-coil limit

(Jansons and Phillips, 1990) zXM � 1, where

CXM ¼ 1=zXM1aðlM=LMÞ1=2: This approximate formula

compares favorably with Monte Carlo calculations of the

covolume (Lue, 1998). Although Eq. 17 is valid for any ratio

of the sphere radius, RX, to the radius of gyration, RG, of the

polymer, it assumes that the polymer is sufficiently long that

LM � lM (as is the case for our dextran). The original

derivation of Eq. 17 (Lue, 1998) and its random-coil limit

(Jansons and Phillips, 1990) pertain to a polymer of

vanishing thickness (RM ¼ 0). In Eqs. 17–19, we have

incorporated the finite thickness of the polymer chain simply

by replacing RX with the distance of closest approach, RX 1

RM (Ogston, 1958).

Combination of Eqs. 14–17 now yields

lnG ¼ DbBPTI fBPTI 1DbM fM; (20)

where fBPTI and fM are the BPTI and dextran volume

fractions (see Table 1) and

DbBPTI ¼ 80� 11
RB

RA

� �3

1 2 pB 11
RB

RA

� �3

� 40� 4

10

RB

RA

� �3
" #

(21)

DbM ¼ 10 11
RA

RM

� �2

CAM 1
4

3

ðRA 1RMÞ
LM

� 	

� 11
RB

RM

� �2

CBM 1
4

3

RB 1RMÞ
LM

� 	
: (22)

The first term in Eq. 20 represents the nonideality

contribution to the BPTI monomer-decamer equilibrium

from the excluded volume of the protein itself. This

contribution is often neglected, but it is significant at the

relatively high protein concentration used here. Because the

protein contribution to lnG depends on the decamer fraction

pB, the latter must be calculated self-consistently (see

Materials and Methods).

RESULTS AND DISCUSSION

Magnetic relaxation dispersion from
dextran solutions

Fig. 1 shows water 1H MRD profiles recorded from five

dextran solutions at pH 4.5, 27.0 C, and dextran volume

fractions fM in the range 0.057–0.227 (samples D1–D5 in

Table 1). Because dextran is highly flexible and unstructured,

we do not expect any long-lived water molecules in these

samples. Apart from a minor contribution from paramagnetic

O2 (Teng et al., 2001), the observed dispersions can therefore

be attributed to the three labile hydroxyl protons per glucose

residue in dextran. On the basis of previously reported 1H

CPMG T2 dispersions from dextran (Hills et al., 1991) and

glucose (Hills, 1991) solutions, we estimate that the mean

hydroxyl proton residence time is tH � 0.5 ms under our

conditions. Because tH is two orders of magnitude shorter

than the zero-frequency intrinsic 1H relaxation time of the

hydroxyl protons, estimated as RM
1;1ð0Þ

h i�1

� 60ms from

Eq. 1 and the data in Fig. 1,we are in the fast-exchange regime,

as assumed in Eq. 1. This conclusion is corroborated by

complete 1H MRD profiles of sample D2 recorded at pH 3.0

and 6.0 (data not shown).

The spectral density function for the hydroxyl protons in

dextran is expected to have a complicated form (Tylianakis

et al., 1999; Dejean de la Batie et al., 1988), including

contributions from various dipole-dipole couplings (glucose

CH protons at 2–3 Å as well as H-bonded water molecules)

and various motions (bond librations on 10-ps timescale,

localized and cooperative conformational motions in the

dextran chain on 1–10-ns timescale, and local-global

reorientation modes on timescale 10–100 ns). Furthermore,

FIGURE 1 1H relaxation dispersion profiles from aqueous solutions of

dextran at pH 4.5 and 27�C. The dextran concentrations for samples D1–D5

are given in Table 1. The curves were obtained by three-Lorentzian fits as

described in the text.
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because the high-frequency plateau in the MRD profile is not

well defined (see Fig. 1) and because the zero-frequency

contribution from the intermolecular (OH–CH) part of RM
1;I is

unknown, it is not possible to determine RM
1;S (see Eq. 1) and

thereby extract information about dextran hydration dynam-

ics. However, our aim here is not to characterize polymer or

water dynamics in dextran solutions. We merely wish to sub-

tract the dextran contribution from the MRD profiles mea-

sured onmixed BPTI/dextran solutions. For this purpose, each

of the dextran dispersions in Fig. 1 was represented by a three-

Lorentzian spectral density function, as in Eqs. 4–6 with

jX ¼ 0 and one additional Lorentzian. With the aid of the six

parameters obtained from each fit (three correlation times tk,

three associated amplitudes bk, and a frequency-independent

contribution a), the dextran contribution to R1 can be obtained
at any frequency in the range from 10 kHz to 200 MHz.

If the dextran solutions are sufficiently dilute, the

correlation times tk should be independent of dextran

concentration, whereas the amplitude parameters bk should

be proportional to the fraction fMI of the observed protons that

reside in dextran hydroxyl groups. If the small O2 contribution

is neglected, it then follows from Eq. 1 (because fMS is pro-

portional to fMI ) that the excess relaxation rate R1ð0Þ � Rbulk
1

should be proportional to f MI : As seen from Fig. 2, this is the

case for samples D1 and D2, whereas the two most con-

centrated dextran solutions, D4 and D5, show substantial

deviations from linearity.

In dilute aqueous solution, dextran behaves as an un-

structured, flexible random coil (Nordmeier, 1993; Ioan et al.,

2000). The size of the coil may be characterized by the (root-

mean square) radius of gyration, RG. The mean center-to-

center separation of adjacent dextranmolecules, denoted by d,
is given for our samples in Table 1. The dextran solution is

said to be dilute if d. 2RG, so that adjacent polymer coils do

not interpenetrate extensively. If d is smaller, the coils overlap

and the solution is said to be semidilute. The crossover from

dilute to semidilute occurs at the overlap concentration, f*,

where the polymers, regarded as spheres of radius RG, are

close packed (on a face-centered cubic lattice). Thus,

f
�
M ¼ 3VM

4p R
3

G

p

3
ffiffiffi
2

p ; (23)

where the first factor is the dextran volume fraction within

a sphere of radius RG and the second factor is the volume

fraction of such spheres at close packing. The radius of

gyration has been determined by static light scattering for

dextran preparations of higher mean molecular mass than

used here, e.g., RG ¼ 86 Å for �MM ¼ 80 kgmol�1 (corre-

sponding to a contour length, LM ¼ 2170 Å) (Nordmeier,

1993) and RG ¼ 120 Å for �MM ¼ 132 kgmol�1 (LM ¼ 3580

Å) (Ioan et al., 2000). For the freely jointed chain model

(Flory, 1969),

RG ¼ lM LM

6

� �1=2

; (24)

where lM is the Kuhn length. The radii of gyration measured

by light scattering thus correspond to lM ¼ 20 and 24 Å.

Shorter values of the Kuhn length for dextran have been

deduced from hydrodynamic data, lM ¼ 13 Å (Pavlov et al.,

1999; and references cited therein), and from single molecule

force measurements, lM ¼ 8 Å (Rief et al., 1998) and lM ¼
4.4 Å (Marszalek et al., 1998). The smallest of these values,

equal to the residue length bM (see above), seems unphysi-

cally short; there are surely some steric constraints between

adjacent glucose residues. For the following estimates of RG,

we use the value lM ¼ 15 Å.

For the �MM ¼ 10:4 kgmol�1 (LM ¼ 282 Å) dextran prep-

aration used for our MRD experiments, Eq. 24 with

lM ¼ 15 Å yields RG ¼ 26.5 Å. Inserted into Eq. 23, this

yields f�
M ¼ 0:10: Comparing with the fM and d values in

Table 1, we conclude that samples D1 and D2 are dilute,

whereas samples D3–D5 are semidilute. This conclusion is

consistent with the experimental findings reported in Fig. 2,

where deviations from linearity, signaling overlap of dextran

coils, are evident for samples D3–D5. Our analysis is also

consistent with previously reported (Tylianakis et al., 1999)
13C relaxation data from solutions of 35 kg mol�1 dextran

(RG ¼ 49 Å according to Eq. 24 with lM ¼ 15 Å), which

showed no concentration dependence up to 10% (w/v)

dextran (corresponding to d ¼ 94 Å).

Magnetic relaxation dispersion from
BPTI/dextran solutions

1H MRD profiles were recorded from six BPTI solutions at

pH 4.5 with varying amounts of dextran added. The dextran

FIGURE 2 Dependence of the zero-frequency excess 1H relaxation rate,

R1ð0Þ � Rbulk
1 ; in dextran solutions D1–D5 on the dextran hydroxyl proton

fraction, fMI : The bulk water relaxation rate at 27�C is Rbulk
1 ¼ 0:272 s�1:
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volume fractions fM was in the range 0–0.214 (samples P0–

P5 in Table 1). In the dextran-free protein solution, only

a small fraction of the BPTI molecules are expected to form

decamers (Gottschalk et al., 2003a). On addition of dextran,

the magnitude of the dispersion step increases markedly. The

origin of this increase is twofold. First, there is a direct

contribution to the dispersion from the rapidly exchanging

hydroxyl protons of dextran (see Fig. 1). Second, there is an

indirect effect of macromolecular crowding, whereby the

configurational entropy of the dextran molecules shifts the

BPTI self-association equilibrium toward the decamer, which

produces a much larger dispersion than 10 monomers. To

isolate the crowding effect, we subtract the relaxation rate

from the corresponding protein-free dextran sample, forming

the differenceDR1¼R1(BPTI1 dextran)�R1(dextran). This

correction will remove the dextran contribution toR1(BPTI1

dextran) provided that two conditions aremet. First, thewater/

glucose mol ratio must be the same in the (BPTI1dextran)

sample and in the dextran sample. This is the case here (see

Table 1). Second, the dextran relaxation contribution must be

unaffected by the protein. This is likely to be the case if the

dextran concentration is so low that the polymer coils do not

overlap (dilute regime) and if the protein does not interact

specifically with dextran. As discussed above, we expect

these conditions to be met for samples P1 and P2, but not for

samples P4 and P5 (sample P3 is a border-line case).

If the direct dextran contribution has been completely

removed, the difference dispersion DR1 only reflects labile

protons and internal water molecules in BPTI (see Eq. 3). For

samples P0–P3, the data are well described by a two-

Lorentzian dispersion law as in Eqs. 4–7. For samples P4 and

P5, a third Lorentzian component was required. Fig. 3 shows

the dispersion from sample P0 and the difference dispersions

from samples P1–P5. To exhibit the crowding effect more

clearly, we display the normalized rate,

DR
norm

1 ¼ ðDR1 � aÞ N
BPTI

W

N
BPTI

W;norm

; (25)

with NBPTI
W;norm ¼ 3500: This normalization corrects for the

variation of the water/BPTI mol ratio, NBPTI
W ; with increasing

dextran concentration (see Table 1).

The six dispersions in Fig. 3 were fitted jointly with two

(samples P0–P3) or three (samples P4 and P5) Lorentzians

and with the two shortest correlation times in common for all

samples. In all, 24 parameters were thus fitted to 226 data

points. These fits are displayed in Fig. 3. The two common

correlation times came out as t1 ¼ 4.3 6 0.1 ns and t2 ¼
27.06 0.5 ns, close to the values, t1 ¼ 3.3 ns and t2 ¼ 26.3

ns, expected for the BPTI monomer and decamer in dilute

H2O solution at 27�C and pH 4.5 (Gottschalk et al., 2003a).

The slight slowing down of protein tumbling is attributed to

dextran (see below), which should have a larger effect on the

somewhat elongated monomer (rotational diffusion anisot-

ropy 1.28) than for the nearly spherical decamer (rotational

diffusion anisotropy 1.08) (Gottschalk et al., 2003a). The

third correlation time obtained from the fit was t3 ¼ 89 6 5

ns and 147 6 5 ns for samples P4 and P5, respectively. This

is in the same range as observed in previous work (at high

salt concentration), where it was attributed to loose clusters

of a few decamers (Gottschalk et al., 2003a).

A macromolecular crowding agent, such as dextran, can

affect protein rotational diffusion by indirect hydrodynamic

interactions aswell as by direct potential-derived interactions.

Hydrodynamic theory (Cichocki et al., 1999) and Stokesian

dynamics simulations (Phillips et al., 1988) yield tR(f) ¼
tR(0)/[1� 0.6310 f� 0.726 f2 � 0.52 f3] for a suspension

of equal-sized hard spheres at volume fraction f. For f ¼
0.25, this becomes tR(f) ¼ 1.27tR(0). This modest (27%)

retardation is essentially due to configurations where two

spheres are very close to contact. In fact, a dominant con-

tribution comes from separations comparable to or less than

the size of a water molecule. At such short separations, the

validity of the hydrodynamic continuum description may be

questioned. If such contact configurations are not present,

e.g., because of the energetic cost of removing the first

hydration layer from the macromolecules, then the hydrody-

namic retardation effect is negligibly small even at high

volume fractions (of spherical particles) (Watzlawek and

Nägele, 1997). In the presence of soft repulsive forces, the

hydrodynamic retardation effect is greatly diminished

(Watzlawek and Nägele, 1997). On the other hand, the dextran

coils are not compact and therefore permeate space more

uniformly than compact spheres. At the higher dextran con-

centrations, some polysaccharide segments must therefore

FIGURE 3 1H difference relaxation dispersion profiles from aqueous

solutions of BPTI and dextran at pH 4.5 and 27�C. BPTI and dextran

concentrations for samples P0–P5 are given in Table 1. The curves were

obtained by two-Lorentzian (samples P0–P3) or three-Lorentzian (samples

p4 and p5) fits as described in the text. The data have been normalized to

a water/BPTI mol ratio of NBPTI
W ¼ 3500:

BPTI Association in Dextran Solution 2861

Biophysical Journal 88(4) 2855–2866



be near BPTI molecules and may thus account for the

observed (modest) rotational retardation.

Fluorescence anisotropy measurements of protein rota-

tional diffusion in the presence of macromolecular crowding

agents have shown stronger retardation effects than expected

from hydrodynamic interactions alone, e.g., tR(f)/tR(0) � 5

for green fluorescent protein in the presence of dextran at

f ¼ 0.25 (Swaminathan et al., 1997) and tR(f)/tR(0) � 1.4

(monomer) or 2.5 (flexible dimer) for apomyoglobin in the

presence of ribonuclease A at f ¼ 0.18 (Zorrilla et al.,

2004b). These larger retardation factors may be attributed to

attractive interactions between the reference protein and the

crowding agent. The smaller retardation factor of ;1.3 for

the BPTI monomer and even less for the BPTI decamer (see

above) obtained from our MRD data indicate that the BPTI-

dextran interaction is essentially repulsive. In conclusion,

whereas a large rotational retardation, as observed in some

other systems (Swaminathan et al., 1997; Zorrilla et al.,

2004b), is incompatible with these MRD data, a modest

retardation has little effect on the data analysis. Fits with the

two correlation times t1 and t2 frozen to their dilute-solution

values thus gave essentially the same oligomer populations

as obtained when t1 and t2 were freely adjustable param-

eters.

The third correlation time was t3¼ 896 5 ns and 1476 5

ns for samples 4 and 5, respectively. This is in the same range

as observed in previous work (at high salt concentration),

where it was attributed to loose clusters of a few decamers

(Gottschalk et al., 2003a).

The oligomer fractions, pX, derived from the corresponding

dispersion amplitudes, bX, with the aid of Eq. 9, are given in

Table 2. The BPTI decamer fraction is only 1.4% in the

absence of dextran, but it increases greatly as dextran is added,

reaching 40% for sample P3 at a dextran volume fraction of

only 0.14 (see Table 1). For samples P4 and P5, the monomer

fraction appears to increase with increasing dextran concen-

tration. We believe that this anomalous behavior is related to

the unexpected large increase of the amplitude sumSX bX¼B
in going from sample P3 to sample P4 (see Table 2). If the

number of long-lived water molecules and labile protons that

contribute to the dispersion does not change on self-

association of BPTI, then B should be independent of the

oligomer fractions. A previous study of salt-induced BPTI

decamer formation indicates that this is the case, with B ¼
(1.1–1.3)108 s�2 (Gottschalk et al., 2003a). The B values of

samples P0–P2 are essentially within this range, whereas

sample P3 deviates somewhat and samples P4 and P5 have

about threefold larger B values.

Two different scenarios might explain the anomalous

behavior of samples P4 and P5. One possibility is that the

structure and dynamics of dextran, in the semidilute regime,

are significantly perturbed by the protein. In that case, the

additivity assumption (see Materials and Methods) would

break down so that the direct dextran contribution to R1(BPTI

1 dextran) would not be completely removed by subtracting

R1(dextran) (see Eq. 3). This explanation is consistentwith the

strong deviations from linearity in Fig. 2 for samples D4 and

D5, suggesting a slowing down of chain dynamics on con-

finement of the polymer coils. Addition of a relatively large

amount (fBPTI � 0.06) of charged protein molecules (along

with counterions) to these semidilute dextran solutions might

amplify this effect. Another possibility is that dextran affects

the structure and dynamics ofBPTI in otherways than shifting

the monomer-decamer equilibrium. The solubility of BPTI

decreases with increasing dextran concentration (Laurent,

1963) and it is therefore conceivable that a fraction of the

protein in samples P4 and P5 exists in the form of

microaggregates. Either of these two scenarios may be

supported by the observation that samples P4 and P5 had

a markedly higher viscosity than samples P0–P3 and by the

finding that dextran forms a gel at high KCl concentrations

(Naji et al., 2003). Further experimental work would be

needed to resolve this issue. In the following analysis of the

crowding effect, we will only consider the results obtained

with samples P0–P3.

Quantitative analysis of macromolecular crowding

We shall now attempt to rationalize the observed dependence

of the BPTI decamer fraction, pB, on the dextran volume

fraction, fM, in terms of statistical-mechanical theory. As

described in the Theory section, we use the second-virial

approximation and a hard-particle interaction model (only

short-range repulsion) to express the nonideality factor G ¼
K/K0 (see Eq. 11) in terms of the covolumes VXY, with X¼ A
or B and Y ¼ A, B, or M. To calculate the covolume, we

model the BPTI monomer and decamer as spheres of radius

RA and RB and the dextran as a freely jointed chain polymer

with radius RM, contour length LM ¼ lM �mm; and Kuhn length
lM. To model the additional repulsion due to desolvation, we

take the distance of closest approach between the centers of

two molecular species (A, B, or M) to be the sum of their

anhydrous radii R0
x (deduced from the known molecular

dimensions) and a solvent layer of thickness d (see Materials

and Methods).

Our theoretical analysis differs frommost earlier treatments

of crowding effects on self-association equilibria in two

respects. First, we incorporate the nonideality arising from the

excluded volume of the protein itself. Because this effect

depends on the oligomer fractions, the calculation must be

TABLE 2 BPTI oligomer fractions derived from MRD data

Sample 100 pA 100 pB 100 pC S bX (108 s�2)

P0 98.6 6 0.3 1.4 6 0.3 – 0.93 6 0.02

P1 89.0 6 0.5 11.0 6 0.5 – 1.05 6 0.02

P2 73.2 6 0.9 26.8 6 0.9 – 1.29 6 0.03

P3 60.5 6 1.3 39.5 6 1.3 – 1.60 6 0.05

P4 69.7 6 1.5 21.9 6 1.4 8.5 6 0.8 3.02 6 0.09

P5 74.1 6 0.9 19.2 6 0.8 6.8 6 0.3 3.85 6 0.09
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done self-consistently (see Materials and Methods). For

sample P1, where the volume fractions of BPTI and dextran

are similar (see Table 1), BPTI and dextran make comparable

contributions to the nonideality (see below). The second

novel aspect of our analysis is that we model the dextran

polymer as a flexible cylinder, rather than as a rigid rod

(Ogston, 1970) or a random coil (Jansons and Phillips, 1990).

The more general description (Lue, 1998) used here inter-

polates between these limits. Indeed, the parameter val-

ues, zAM ¼ 1.2 and zBM ¼ 2.2, resulting from our analysis

imply that the investigated system is neither in the rod limit

(zXM � 1) nor in the random-coil limit (zXM � 1).

Fig. 4 shows the result of fitting the model to the

experimentally determined decamer fractions for samples

P0–P3. The two adjustable parameters obtained from this fit

are lM ¼ 24 6 3 Å and K0 ¼ (1.0 6 0.2)1012. As seen from

Fig. 4, the model can account quantitatively for the observed

crowding effect and the resulting Kuhn length is similar to

the values that have been deduced from light-scattering

studies of dextran solutions (Nordmeier, 1993; Ioan et al.,

2000). As noted above, single-molecule force measurements

(Rief et al., 1998; Marszalek et al., 1998), on the other hand,

have suggested a much shorter (in our view, unphysically

short) Kuhn length for dextran. The fit in Fig. 4 was

performed with d ¼ 3.0 Å, corresponding to a monolayer of

nondisplacable water for BPTI-BPTI and BPTI-dextran pairs

at the distance of closest approach. Equally good fits were

obtained with any d-value in the range 0–4 Å. Fig. 5 shows

how the values of the two adjustable parameters, lM and K0,

depend on the fixed d-value.

Fig. 6 shows how the nonideality factor, G, varies with the

dextran volume fraction. The quantity �RT ln G may be

regarded as the crowding (excluded volume) contribution to

the standard free energy of decamer formation for a standard-

state BPTI concentration of CBPTI¼ 1 M. We may thus write

DGO ¼ DGO

ideal 1DGO

crowd; (26)

where DGO
ideal ¼ �RT lnK0 ¼ �16:460:1 kcal mol�1 (with

K0 obtained from d ¼ 3 Å fit). The crowding contribution

at fM ¼ 0.14 (sample P3) is DGO
crowd ¼ �RT lnG ¼

�7:9 kcal mol�1 (at the standard-state BPTI concentration

of CBPTI ¼ 1 M), corresponding to a 5.5105-fold increase of

the association constant, K. For this sample, the protein itself

contributes �1.4 kcal mol�1 to DGO
crowd corresponding to a

10-fold increase of K. In view of Eq. 20, we may write

DG
O

crowd ¼ �RTðDbBPTI fBPTI 1DbM fMÞ: (27)

Within the adopted hard-particle model (where partial

specific volumes are independent of temperature) and

neglecting the weak temperature dependence of DbBPTI (via
pB) and ofDbM (via lM), this is a purely entropic contribution,

FIGURE 4 The fraction, pB, of decamer-forming BPTI molecules as a

function of dextran volume fraction, fM. The points were derived from the

MRD data (samples P0–P3) and the curve resulted from a fit to the model

described in the text (with d¼ 3.0 Å). The dashed curve was calculated with

the same model parameters, but without the nonideality contribution from

BPTI.

FIGURE 5 Variation of (A) the Kuhn length, lM, and (B) the natural

logarithm of the ideal association constant, K0, with the thickness, d, of the

undisplacable water layer. The shaded regions correspond to one standard

deviation in the fitted parameters.
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i.e., DGO
crowd ¼ �T DSOcrowd; related to the excess osmotic

pressure.

It does not appear to be widely recognized among

biochemists and cell biologists that the physical phenomenon

underlying the macromolecular crowding effect on protein

self-association has received considerable attention by colloid

chemists (Kulkarni et al., 2000 and references cited therein).

Fifty years ago, Asakura and Oosawa predicted that addition

of an inert macromolecular species to a dilute solution of

colloidal particles induces an effective attraction between the

colloidal particles (Asakura and Oosawa, 1954, 1958). This

so-called depletion attraction arises from an imbalance in the

local osmotic pressure associated with configurations where

the separation between two colloidal particles is too small

to accommodate a macromolecule. In an alternative (and

equivalent) view, the effective attraction between the

colloidal particles is attributed to the increase in accessible

volume, and hence configurational (translational) entropy, of

the macromolecules as the two colloidal particles approach to

contact. The depletion attraction is the origin of the effects

described in this work.

CONCLUSIONS

Previous contributions from this laboratory have established

field-cycling 1H MRD as a quantitative method for

quantifying coexisting populations of protein oligomers in

solution (Gottschalk et al., 2003ab; Gottschalk and Halle,

2003). Here, we have demonstrated that the MRD technique

also can be used to study protein self-association in the

presence of a second macromolecular species. The ability of

the MRD method to resolve the different oligomeric species

on the basis of their rotational correlation times, with little or

no influence of long-range (electrostatic or hydrodynamic)

interactions is of particular importance in such studies.

Provided that the protein and crowding agent contribute

independently to the measured relaxation rate, the protein

contribution can be isolated by a straight-forward difference

experiment. The MRD method can therefore be used also

when the crowding agent is another protein. On the other

hand, by choosing a crowding agent, such as polyethylenene

glycol, without labile protons or trapped water molecules, it

is not necessary to perform a difference experiment because

the dispersion is then produced exclusively by the self-

associating protein.

The results reported here for the effect of dextran on the

self-association of BPTI to decameric aggregates have been

analyzed with the aid of a statistical-mechanical model that

explicitly incorporates polymer flexibility as well as the

excluded volume of the protein. This analysis shows that the

observed dramatic enhancement of BPTI self-association can

be quantitatively rationalized in terms of hard repulsions,

with no need to invoke other interactions. Our results thus

confirm the prediction that macromolecular crowding at

physiologically relevant volume fractions is a potent mod-

ulator of self-association equilibria (Minton, 1981, 1998,

2000; Ellis, 2001) with potentially far-reaching biological

implications (Garner and Burg, 1994; Walter and Brooks,

1995; Al-Habori, 2001; Hancock, 2004).
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